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What else can we do?

I Data Augmentation
I Debugging Strategies
I Dropout
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Data Augmentation

I Data augmentation is making the most of the training samples by
introducing variations of these samples to accommodate for required
invariances

I Why Data Augmentation?
I Because it’s all about the size of your data –> More data for training
I More importantly... to accommodate invariances
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Invariances in data

I A problem is invariant to a property when the problem remains
unchanged when transformations of a certain type are applied.

Problem Invariant to...
Object Recognition translation, rotation, scaling, viewpoint
Number plate recognition translation, scaling
Action Recognition translation, rotation, scaling, viewpoint, speed
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Invariances in data

Problem Invariant to...
Object Recognition translation, rotation, scaling, viewpoint

I How to provide invariance? → artificially augment for:
I Translation: shifts – luckily CNNs do that for us
I Rotation: rotations
I Scaling: croppings
I Viewpoint: Minor - affine transformations, otherwise :-( collect more data!
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Invariances in data

I Other invariances:
I invariance to random noise
I invariance to occlusion
I invariance to lighting conditions
I invariance to colour variations
I invariance to time of year!? — Generative!
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Data Augmentation

I Data augmentation for invariances existed before deep learning

Ozuysal et al (2010). Fast Keypoint Recognition Using Random Ferns. TPAMI.
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Data Augmentation

I Why can’t current deep learning methods do that automatically for us?
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But... Do I need more Data?

I There is a balance between the expense of collecting labelled data
and refining the method

I How are you performing on your training data?
I poorly → your algorithm needs work, you are not making the most of the

data you have

I quite well → How are you performing on your test data?

I poorly → try augmentation, otherwise collect more data

I quite well → you’re done! Find a more interesting problem

I I collected more data but things did not improve?
I Think about the quality of your data
I Think about the quality of your labels
I → fix and start over
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Debugging Deep Learning Algorithms

I When a general machine learning code performs poorly, including
deep learning code, it is very tricky to decide whether that is a bug in
the code or a problem in the algorithm

I Compiling correctly and getting numbers out is not an indication of
correctness

I We do not know what the "correct" implementation will give in terms of
accuracy, that is in fact what we wish to discover

I Careful debugging is thus a must
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What is your baseline performance?

I Remember: you cannot perform worse than the baseline!
I What can an algorithm that makes decisions by “chance” do?
I For a binary classifier, your baseline is 50%
I For a classifier into N balanced classes, your baseline is 1

N%

I For a classifier with unbalanced classes??
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Debugging Strategies

I Mickey Mouse Examples - test your solution on small tests that you
know the outcome for

I Evaluate the performance of your building blocks in isolation
I Monitor the model in action
I Look at failure cases (qualitative assessment)
I Checkpoints and model saving
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Debugging Strategies

“Directly observing the machine learning model performing its task will
help to determine whether the quantitative performance numbers it
achieves seem reasonable”

Goodfellow et al, p432
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Debugging Strategies

“Evaluation bugs can be some of the most devastating bugs because they
can mislead you into believing your system is performing well when it is
not”

Goodfellow et al, p432
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Dropout

I What is regularisation?
I Remind yourself about dropout, as a regularisation/ensemble

approach, from the lectures.
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By the end of these lab sessions, you should be able
to...

I Define a Fully-Connected Deep Neural Network (DNN) architecture
I Define a shallow Convolutional Neural Network (CNN) architecture
I Train and validate a CNN, and monitor its progress and results using

Tensorboard
I Understand and estimate the effect of changing hyper-paramters on

your results
I Implement and evaluate a variety of data augmentation techniques
I Implement dropout as one of the most common regularisation

approaches

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: PRACTICAL - Lab4 - 2020/2021



And now....

READY....

STEADY....

GO...
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