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• Recap: Stochastic Gradient Descent
• Key Loss Functions
• L1 and L2 Weight Decay
• Dropout and Noise
• Data Augmentation
• Why deep is advantageous...
• Scalability Considerations...

Agenda Lecture 5
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ReCap: SGD
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(Online) Backpropagation so far: Notational Compaction
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Noisy Gradient Descent due to Online Sampling

parameter dimensions of W
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Some Key

Cost Functions
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Practical Step 1: We want outputs to 
represent probabilities of class labels, 
thus outputs should be within {0,1} 
and sum to 1! – Can we force outputs to 
reflect such a distribution by creating a 
layer-wide, normalising non-linearity?

 yes, introduce a softmax neuron 
group in the last layer with:

- now all outputs fi
N range between 0

and 1, while the group output sums to 1

Adjusting the Output Layer for Classification
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Adjusting Loss for Classification

Now, so far we have changed the layout of the 
last layer to represent a classification setting. 
What is an appropriate cost function?

 use cross-entropy 
as the group’s cost function:

- steepness of the cost function derivative now 
cancels the shallowness of the softmax derivative 
exactly, leading to an MSE-style delta propagated 
backwards from layer N – can we show why this works? 
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Counter-Action: Softmax exactly balances Cross-Entropy Loss
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this is propagated backwards as the delta – basically, just the 
discrepancy for a particular output as one would intuitively expect...
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Problem with High Parameter Spaces: Overfitting

• consider ImageNet (Krizhevsky et al. 2012), which is a 
highly successful, by now classic network with (only) 8 
layers; yet, it has already approx. 650,000 neurons, 
60,000,000 parameters and 630 million connections!
models with such a high degrees of freedom are 
particularly prone to overfitting

images source:
Lever et al. 2016, Nature Methods

overfitting (dotted) and underfitting (grey) examples 
for regression (left) and classification (right) task
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Loss across Training: ‘Pocket’ Algorithm and Early Stopping

illustration based on graph by
Ian Goodfellow, www.deeplearningbook.org

further overfitting?generalisation
gap widening

Keep best N results at any stage (‘in your pocket’) based on validation set 
and decide based on further performance whether to revert back to it. 
One may also decide to terminate learning altogether (early stopping) 
while the validation performance is better.
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Regularisation
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Regularisation

“Regularization is any modification we make to a 
learning algorithm that is intended to reduce its 

generalization error, but not its training error.”
From: Ian Goodfellow 2015

 One may view many recent developments in deep 
learning as attempts to reduce the complexity of 
neural network training models – including 
L-regularization (constraining weight space), 
dropout (stochastic network thinning), 
depth (composition over concatenation), as well as 
parameter (CNNs) and network (RNNs) sharing.
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L2-Regularisation

• Assumption: we target a local minimum with 
small-magnitude weights to combat overfitting

• Idea: introduce a penalty for every weight based 
on its squared value directly in the cost function J:

• practically, this is easiest implemented as scaled 
weight decay towards zero during training:
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L1-Regularisation

• Assumption: we target a local minimum with 
sparse weights against overfitting (Occam’s Razor)

• Idea: introduce a penalty for every weight based 
on its magnitude directly in the cost function J:

• practically, this is easiest implemented as absolute 
weight decay towards zero during training:
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Dropout



Applied Deep Learning   |   University of Bristol 17

Neural Networks as Ensemble of Sub-networks

adjusted based on graph by
Ian Goodfellow, www.deeplearningbook.org
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Dropout for Regularisation (Srivastava et al. 2014)

• Idea: during training, for each loop of weight updates 
`immobilise’ a random subset of neurons with probability 
(1-p) by forcing their output to zero (particularly effective 
when applied to final fully-connected layers of networks)

 these neurons now do not contribute to the network output 
nor can they be used for adjusting weights or passing 
gradients through them; p is often set to a value around 0.5 
before tuning on validation data

image source:
Srivastava et al. 2014

Training Time Testing Time
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MNIST Test Performance Impact of Dropout on Test Data

source:
Srivastava et al. 2014
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DropConnect (Wan et al. 2013)

image source:
Wan Li, http://cs.nyu.edu/~wanli/dropc

• Idea: instead of dropping neurons, 
DropConnect sets weights to zero 
with a probability (1-p) providing a 
more fine-grained mechanism for 
regularisation based on the same 
underlying concept.

image source:
Wan Li, http://cs.nyu.edu/~wanli/dropc

Standard Network DropOut DropConnect
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Data against Overfitting

• so far, we have addressed overfitting by limiting the 
representational capacity of our networks by introduction of 
model constraints and by interpretation of the networks as 
ensembles

• however, overfitting can always be addressed by more data, 
more representative data and/or strategically sampled data 

image source: Andrew Ng

• given the high 
dimensionality of deep net 
parameter spaces, taking 
advantage of more data is 
often possible without 
reaching the 
representational limits of 
the network
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Data Augmentation
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Realistic Variance Matters: Augmentation for Images

image source: Ian Goodfellow

Crop +
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Example: Augmentation for Images

image source: V Yadav, https://github.com/vxy10
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Why Deep and Scalability
(open topic)



Applied Deep Learning   |   University of Bristol 26

Point 1: Hierarchical Automatic Modularisation

image adapted from Ian Goodfellow, www.deeplearningbook.org

‘module’
shared by 
following
layer

increasing
module

specificity
and 

complexity

availability of 
previous layer 
may reduce
data 
requirement 
for training 
this layer
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Point 2: Practical Performance (Example)

• Example: Conversational Speech 
Transcription Using Context-
Dependent Deep Neural 
Networks (Seide et al. 2011)

• direct comparison of different 
layer depth shows performance 
advantage for deeper structures 
across many domains

• however, required training times 
increase rapidly given large 
datasets and deep/large 
network architectures

Hidden Layers
x Size

Error Rate (%)
(word-error)

1 x 2k 24.2

2 x 2k 20.4

3 x 2k 18.4

4 x 2k 17.8

5 x 2k 17.2

7 x 2k 17.1

1 x 3.8k 22.5

1 x 4.6k 22.6

1 x 16k 22.1
data source: 

Seide et al 2011
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Point 3: Sketch of Oscillation Argument (Telgarsky 2016)

image source: 
Telgarsky 2016, watch 

https://www.youtube.com/watch?v=ssaXJqG9Dz4

• Key Claim: There are functions f
that can be represented by a deep 
ReLU net with a polynomial number 
of neurons, where a shallow 
network would require 
exponentially many units.

• Telgarsky shows that k ReLU-like 
layers h can generate in the order of 
2k-1 oscillations to approximate 
functions, while shallow networks 
have exponentially less peaks.

• Open Question: Are these functions 
f the type of `natural’ functions of 
interest to practical problems?
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Some Current Ideas related to Scale and Depth

• Idea of Mixtures of Experts: 
extend network capacity and 
yet keep parameters per 
training run at bay via learning 
to switch on/off parts of 
networks dependent on their 
appropriateness per example 
(Shazeer et al. 2017)

• Idea of Network Distillation: 
learn deep ensembles, but 
then ‘compress’ deep networks 
into shallow or more efficient 
compactions (Ba and Caruana
2014, Hinton 2017)

image source: 
Shazeer et al. 2017

Deep Net 1

Deep Net 2

Deep Net n

Shallow 
Net

com
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