Department of Computer Science
University of Bristol

COMSMO045 — Applied Deep Learning
comsmO0045-applied-deep-learning.github.io

Lecture 04

OPTIMISATION
TECHNIQUES

Tilo Burghardt | tilo@cs.bris.ac.uk

28 Slides

Agenda for Lecture 4

* Recap Backpropagation
* Optimisation Techniques

Applied Deep Learning | University of Bristol 2

RECAP:
BACKPROPAGATION
ALGORITHM

Recap: Backpropagation Algorithm

initialise all weights w; randomly

fort=0, [, 2, ... do

pick next training sample ([/,%. /-%....1. [/;". /...]
T / I
FORWARD PASS: compute all ;= > W /'™ and f] =g/(s})
i=l
compute top deltas 5jN :g'j.v (Sjv) - af/@gN il

BACKWARD PASS: compute all ' = g"™' (s,7))_ wl 6!
j=1

update weights w; «— ij -7 fil_lé'j

check if stopping criteria are met to break loop

return final weights w;_

N
Wi

o0 l

Applied Deep Learning | University of Bristol 4

(Online) Backpropagation so far: Notational Compaction

initialise all weights W; randomly

fort=0 [, 2, ... do

pick next training sample ([/,%. /% ... 1. I, /55 1)
dad-1
FORWARD PASS: compute all ;= » W /™ and fI =g/(s})
i=1
compute top deltas é'jN =g'§v (S;v)-a]/@ij iy

BACKWARD PASS: compute all ' = g" ™ (s/)> w! &/

s =1
update weights W;. — W:j -1 f! lé‘]]. !
check if stopping criteria are met to break loop initialise all weights W randomly
3 . i
return final weights w; fori=0, 1, 2, ... do

pick next training sample (X, *)
FORWARD-BACKWARD PASS: compute VJ

update weights W < W —npVJ

check if stopping criteria are met to break loop

return final weights W

Applied Deep Learning | University of Bristol 6

Noisy Gradient Descent due to Online Sampling

Can we actually
N reach an exact
~ minimum?

single samples will only very
roughly approximate aspects
of the cost function gradient
in online mode, leading to a
very noisy gradient descent
which may not find the
accurate minimum at all

VJ(x; W,)

new old learning rate steepest gradient given x

b 2
N\ //
%

parameter dimensions of W

Applied Deep Learning | University of Bristol 7

Online, Deterministic and Stochastic Training

initialise all weights W randomly
ONLINE for1=0, 1,2, ... do
Can we actually | SRADIENT ' et aiing sampte (5
DESCENT
re a C h a n exa Ct FORWARD-BACKWARD PASS: compute V.J
update weights W < W —nVJ
m I n I m U m ? check if stopping criteria are met to break loop
return final weights W given small
enough
initialise all weights W randomly learnJ..ng rate
DGD will make
progress to
fori=0, 1, 2, .. do initialise all weights W randomly tr'uge local
pick a small subset of training samples (X, F*) fori~0. 1. 2 do minimum, but
=, 1, 2, ... at high
(MINIBATCH) o % computational
§TOCHAST|C FORWARD-BACKWARD PASS: compute V.J use all training samples (X, F¥) cost !
GRADIENT update weights W <~ W —nV.J FORWARD-BACKWARD PASS: compute V.J
DESCENT check if stopping criteria are met to break loop update weights W < W —V.J
return final weights W / check if stopping criteria are met to break loop
| / return final weights W
iy V> L(f(x,;,W),f*) | DETERMINISTIC GRADIENT DESCENT
J

Practical Solution: SGD with ‘Simulated Annealing’

initialise all weights W randomly

for k=0, 1, 2, ... T do

introduction of a changing learning rate

k k decreasing over 7+/ steps by blending from
a starting learning rate 7, towards a final
Iy = (1 = ;)770 c ;?71- learning rate 7,.

forr=0, [, 2, ... do
pick a small subset of training samples (X, F*)

FORWARD-BACKWARD PASS: compute V.J
update weights W <~ W —n,V.J

return final weights W

Applied Deep Learning | University of Bristol 9

Slow Descent and Local ‘Dips’ of Cost Function

descent is generally very slow and may get
trapped in very localised, shallow ‘dips’ when
using DGD given very small learning rates - we

would like to €‘surf’ over these local
depressions on steep hills

x

Could we use
physics principles
to speed up
descent?

N

parameter dimensions of W

Applied Deep Learning | University of Bristol 10

NTUM

>
0
>

Speeding up Learning via Momentum

* |dea: introduce a velocity term v of
‘current descent speed’ and use
current gradient to change this
velocity rather than weights directly

* step sizes now depend on how large

and how aligned a previous sequence
of gradients has been R
Momentum (green)

* formally, we change the update orovides clear

SGD

NAG
Adagrad

Momentum

Adadelta
Rmsprop

equations for weights from: convergence speed
advantage over plain
_ . SGD (red); t
Wt—l—l o Wt o UVJ(X, Wt) oversho:)ets thnoougeh.

by introducing velocity accumulation:
Vi = o v, —nVJ(X; W)
momentum parameter
Wt+1 = Wt + Vt+1
—_—
momentum

Applied Deep Learning | University of Bristol

Y — seb
- Momentum

= NAG
— Adagrad
Adadelta

Rmsprop |

12

Nesterov Accelerated Gradient (NAG)

* |dea: don’t calculate gradient at
current position since momentum will
carry us forward to another position
anyway — take (lookahead) gradient at

—nVJ(X; W)
NNN t
~y

target W,

e can be seen as adding a ‘correction —VI(GW,)
term’ to the standard method of MOMENTUM
momentum

* consistenly works slightly better than ‘

standard momentum in practice
* weights are now updated as follows:

Vg = v, —nVJ(X; W +av,)
previewvlocation

=W +v NESTEROV
t o T+l W, MOMENTUM

—nVJ(X; W, +av,)

W

t+1

* however, still very slow progress on
shallow plateau regions

QSD
e
o
L]
7

Newton’s Method (2"9 Order)

* |dea: let curvature rescale the gradient —
multiplying the gradient by the inverse
Hessian leads to an optimization that takes
aggressive steps in directions of shallow ol
curvature and shorter steps in directions H(J) = 0°J
of steep curvature ow, 0w,

* great advantage: no extra learning rate or
hyperparameters needed - o]

* however, computing and inverting the
Hessian is very expensive and space
consuming (Hessian H has square size
w.r.t. to number of weights!):

W, =W, -HUJX;W,))'VJ(X;W,)

* vet, Newton’s method without
modifications has a critical shortcoming:
it is attracted to Saddle points...

(see also “Hessian-free” 2"d-order methods)

RECAP: HESSIAN MATRIX

Applied Deep Learning | University of Bristol 15

Saddle Points as Critical Points

 There are various point categories of the objective function where
the gradient is zero:
- Minima (all Eigenvalues of Hessian positive),
- Maxima (all Eigenvalues of Hessian negative),
- Saddle points (both positive and negative Eigenvalues of Hessian)

Minimum Maximum Saddle point

Applied Deep Learning | University of Bristol 16

DLE POINT
RATIONS

Are there more Saddle points or local Minima?

e for an arbitrary problem, assume sign of Hessian Eigenvalues
is random:
- exponentially less likely to get ‘all positive’ (i.e. being a
Minimum) with higher and higher parameter dimensions

 Random Matrix Theory provides further insight:
- the lower Jis, the more likely to find positive Eigenvalues

* neural nets without non-linearities have global minima
connected via a single manifold and many Saddle points
(Saxe et al, 2013)

GOOD NEWS:

- Most critical points with higher cost J should be Saddle points
and they offer a chance to escape from them particularly via
symmetry-breaking descent-methods!

- Most local minima should therefore have a low cost J
associated with them and may be reachable via descent!

Applied Deep Learning | University of Bristol 18

High Number of Saddle points

e experiments and theoretical MONKEY
arguments (Dauphin et al 2014, _SADDLE
Choromanska et al 2015) provide
some support that neural nets have
indeed as many Saddle points as
Random Matrix Theory proposes

* in fact, the number of Saddle points
may increase exponentially with the
dimensionality of the function

R \\

NOT SO GREATNEWS: s SADDLE POINT
- Newton’s method will work poorly \@r EXAMPLES

(white)

(since being attracted to Saddle
points) with a high chance of getting
stuck

- however, idea of a function-adaptive
learning rate seems valuable

PER-WEIGHT

PTIVE GRADI

ENT

Adagrad,

adaptive gradient

* |dea: keep track of per-weight learning rates
to force evenly spread learning speeds —
weights that are associated with high
gradients have their effective rate of learning
decreased, whilst weights that have
infrequent or particularly small updates have
their rates increased.

e such ‘'monotonic learning’ may help with
issues including breaking of symmetries and
slow progress in particular dimensions

* update now uses a W -sized accumulator A:
A=A +VJI(X W,))2

element-
by-element

squaring

VJ(X; W
Wt+1 = Wt —n (‘ t) avoiding
(IAkt+1 te 1;rii;:?

* however, this ‘'monotonic learning’ is a very
aggressive approach and lacks the possibility
of late adjustments...learning usually stops
too early...

y (Duchi et al. 2011)

Example where
Adagrad breaks

symmetry...

SGD

Momentum

NAG

Adagrad
Adadelta

4%

Rmsprop
:'?"I"l'"l"l"l"""'l"')
TR
000,000 %
KN
Rl
UL
Sk

4}
AT
4 ’I”'I”',llll”"l"l"l,

,’I,'lll"l,,'l[,"

2

</

%
-2

-4

Concept: element-wise
dampening of historically
highly active gradient
components

(A being large) and
amplification of slowly
changing gradient components
(A being small)

RMSprop (Hinton “L.6 §.29”)

* |dea: root-mean-square propagation —

Saddle example

combat the aggressive reduction in T T

Adagrad’s learning speed by previous SGD
propagation of a smooth running _— ve
average adadelta

Rmsprop

e update equations now introduce a
smoothing parameter f:

A =PA +(1-B)VIX W)’
VJ(X; W,)

T (AL o)

* just adding standard momentum
dOes not help mUCh in improving Concept: element-wise

dampening of recently highly

performance further (see Hinton) active gradient components

(A being large) and

W, =W, -

t+1

amplification of slowly

* however, further smoothing and e e e

(A being small)

correction operations can be applied...

Some Observations in Convergence Visualisations

‘ : —— SGD
B =91 E 1 h - Momentum
— momentum || Xample where —
example where — nag 3 Nesterov B
slowness of — adagrad | Momentum — Adagrad
SGD (red) —— adadelta N (purple) 2 Adadelta
convergence — rmsprop | navigates Rmsprop
and Momentum \ saddle somewhat
overshoot is faster than
shown... plain Momentum
! ; . , , (green)...
1 2 3 4 5
80 100 120
— SGD Whilst N
SEPE TIIERE - Momentum overshoot can ' | — Momentum
Momentum (green) 4 — NAG be severe, n e AG
and NAG (purple), W1, — Adagrad often i — Adagrad
) G % = s
but particularly Ll Adadelta Momentum _ : Adadelta
SGD d h S ’II/,,"I’ & I‘ . Rmsprop
(red) have W I,'l Rmsprop methods still : __
1 "",’"I?l S
trouble breaking ;';";::::,W%%W% carry an
the symmetry of the i advantage
i 9%0,%, .
saddle point... ';o:W over vanilla
X 0000
KKK SGD. ..
1.0
-15

Adam(adaptive moment estimation) (Kingma & Ba 2014)

* ldea 1: smooth RMSprop‘s usually noisy’ incoming gradient
(beyond the effect of mini-batching) using a new parameter o

Gt+1 A+ A=-a)VJ(X;W,))
= ﬂAt +(1=B)VI(X; W)’
Gt+l
Wt+l - Wt _77(liAHl -I-é')

’

* Idea 2: correct for the impact of bias introduced by ‘initialising
the two smoothed measures —i.e. starting with r=/ ‘fade-in’
the smoothing effect exponentially by introducing G and A :

G, =aG,+(1-a)VJ(X;W,))
G, /(1-a")
Ay = PA A+ (1= VI W)
A=A, /(l—ﬁ’)

t+1 (\/X N g)

t+1

Q |

Sum mary Adam(adaptive moment estimation)

—
fading of
gradient

-> force G
fast

start-up

L =aG, +(1-a)VJ(X;W,))
a — Gt 11 / (1 — t) Srrlgarf:,:;]iienn‘g:cso1c
= SA, +(1- B)(VJ (X°W)3

magnitudes element-wise
squaring
A=A, /(1- ,B
t+1

W

t+ t_n(\/X_I_g)
\

element-wise dampening of recently highly active \\\\\\
gradient components (A being large) and

amplification of slowly changing gradient \\\\////
components (A being small)

parameter dimensions of w

c
=)
ks
c
>
U
X",
O
O

Right, can we train deep networks now? — Maybe...

 Why is applying Adam to RelLU-based networks not a guarantee for
successful deep learning then?

— We have introduced new parameters a, f, ¢... :
how to set these so-called "hyper-parameters’?

— Even our mini-batch size has not been discussed...

— We have not talked about network initialisation — this matters
a lot and can change results drastically if done wrong.

— Overfitting is likely to occur in deep networks as in any learning system:
regularisation techniques are critical to achieve good generalisation
beyond the training data available!

— Number of parameters explodes in deep networks;
we may need to share them or reuse the entire net (e.g. CNNs/RNNs).

— The simple loss functions discussed so far need extending to
provide better results for common tasks such as classification.

— The data we deal with is part of the training process — we have not talked
about data at all so far...

= Yet, applying deep learning and achieving top-end results often involves a
lot of parameter tuning, testing and trial-and-error of various designs and
techniques available, and performance is critically dependent on the quality
of training data and also the GPU-sizes which limit network designs —
it is still as much an “engineering process’ as it is a science...

Next: COST FUNCTIONS, REGULARISATION AND DEPTH

* Key Loss Functions

L1 and L2 Weight Decay
* Dropout and Noise

* Data Augmentation

* Scalability Considerations...

Applied Deep Learning | University of Bristol

* Why deep is advantageous...

28

