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Agenda for Lecture 4 

• Recap Backpropagation 
• Optimisation Techniques
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Recap:
Backpropagation

Algorithm
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Recap: Backpropagation Algorithm
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SGD
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(Online) Backpropagation so far: Notational Compaction
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Noisy Gradient Descent due to Online Sampling

parameter dimensions of W
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single samples will only very 
roughly approximate aspects 

of the cost function gradient 
in online mode, leading to a 
very noisy gradient descent 

which may not find the 
accurate minimum at all

Can we actually 
reach an exact 
minimum? 
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Online, Deterministic and Stochastic Training

ONLINE
GRADIENT 
DESCENT

(MINIBATCH)
STOCHASTIC
GRADIENT 
DESCENT

Can we actually 
reach an exact 
minimum? 
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given small 
enough 

learning rate 
DGD will make 
progress to 
true local 

minimum, but 
at high 

computational 
cost!
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Practical Solution: SGD with ‘Simulated Annealing’

introduction of a changing learning rate ηk

decreasing over τ+1 steps by blending from 
a starting learning rate η0 towards a final 

learning rate ητ.

...



Applied Deep Learning   |   University of Bristol 10

Slow Descent and Local ‘Dips’ of Cost Function

parameter dimensions of W

descent is generally very slow and may get 
trapped in very localised, shallow ‘dips’ when 
using DGD given very small learning rates – we 

would like to ‘surf’ over these local 
depressions on steep hills

Could we use 
physics principles 
to speed up 
descent? 
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Momentum
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• Idea: introduce a velocity term v of 
‘current descent speed’ and use 
current gradient to change this 
velocity rather than weights directly

• step sizes now depend on how large 
and how aligned a previous sequence 
of gradients has been

• formally, we change the update 
equations for weights from:

by introducing velocity accumulation:

Speeding up Learning via Momentum
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animation sources: 
Alec Radford

Examples where 
Momentum (green) 
provides clear 

convergence speed 
advantage over plain 

SGD (red); note 
overshoots though.



Applied Deep Learning   |   University of Bristol 13

• Idea: don’t calculate gradient at 
current position since momentum will 
carry us forward to another position 
anyway – take (lookahead) gradient at 
target

• can be seen as adding a ‘correction 
term’ to the standard method of 
momentum

• consistenly works slightly better than 
standard momentum in practice

• weights are now updated as follows:

• however, still very slow progress on 
shallow plateau regions

Nesterov Accelerated Gradient (NAG)
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Newton’s
Method
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Newton’s Method (2nd Order)

• Idea: let curvature rescale the gradient –
multiplying the gradient by the inverse 
Hessian leads to an optimization that takes 
aggressive steps in directions of shallow 
curvature and shorter steps in directions 
of steep curvature

• great advantage: no extra learning rate or 
hyperparameters needed

• however, computing and inverting the 
Hessian is very expensive and space 
consuming (Hessian H has square size 
w.r.t. to number of weights!):

• yet, Newton’s method without 
modifications has a critical shortcoming: 
it is attracted to Saddle points...
(see also “Hessian-free” 2nd-order methods)

)WX;())WX;((WW t
-1

tt1t JJ  H
























.........

......

.........

)(
2

ji ww

J
JH

RECAP: HESSIAN MATRIX



Applied Deep Learning   |   University of Bristol 16

Saddle Points as Critical Points

image  adjusted from source: Ian Goodfellow 2015

• There are various point categories of the objective function where 
the gradient is zero: 
- Minima (all Eigenvalues of Hessian positive), 
- Maxima (all Eigenvalues of Hessian negative),
- Saddle points (both positive and negative Eigenvalues of Hessian)
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Saddle Point 
Considerations



Applied Deep Learning   |   University of Bristol 18

Are there more Saddle points or local Minima?

• for an arbitrary problem, assume sign of Hessian Eigenvalues
is random:
- exponentially less likely to get ‘all positive’ (i.e. being a 
Minimum) with higher and higher parameter dimensions

• Random Matrix Theory provides further insight:
- the lower J is, the more likely to find positive Eigenvalues

• neural nets without non-linearities have global minima 
connected via a single manifold and many Saddle points 
(Saxe et al, 2013)

GOOD NEWS:
Most critical points with higher cost J should be Saddle points 

and they offer a chance to escape from them particularly via 
symmetry-breaking descent-methods!

Most local minima should therefore have a low cost J
associated with them and may be reachable via descent!
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High Number of Saddle points

• experiments and theoretical 
arguments (Dauphin et al 2014, 
Choromanska et al 2015) provide 
some support that neural nets have 
indeed as many Saddle points as 
Random Matrix Theory proposes

• in fact, the number of Saddle points 
may increase exponentially with the 
dimensionality of the function

NOT SO GREAT NEWS:
Newton’s method will work poorly 

(since being attracted to Saddle 
points) with a high chance of getting 
stuck 

however, idea of a function-adaptive 
learning rate seems valuable

image source: 
wikipedia.com

MONKEY 
SADDLE

image source: 
Chen et al. 2012

SADDLE POINT 
EXAMPLES

(white)



Applied Deep Learning   |   University of Bristol 20

Per-weight 
Adaptive Gradients
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Adagrad(adaptive gradient) (Duchi et al. 2011)

• Idea: keep track of per-weight learning rates 
to force evenly spread learning speeds –
weights that are associated with high 
gradients have their effective rate of learning 
decreased, whilst weights that have 
infrequent or particularly small updates have 
their rates increased.

• such `monotonic learning’ may help with 
issues including breaking of symmetries and 
slow progress in particular dimensions

• update now uses a Wt-sized accumulator A:

• however, this `monotonic learning’ is a very 
aggressive approach and lacks the possibility 
of late adjustments...learning usually stops 
too early...
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Example where 
Adagrad breaks 
symmetry...

element-
by-element 
squaring

avoiding 
division 
by zero

animation sources: 
Alec Radford

Concept: element-wise 
dampening of historically 
highly active gradient 

components 
(A being large) and 

amplification of slowly 
changing gradient components 

(A being small)
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RMSprop (Hinton “L.6 S.29”)

• Idea: root-mean-square propagation –
combat the aggressive reduction in 
Adagrad’s learning speed by 
propagation of a smooth running 
average

• update equations now introduce a 
smoothing parameter β:

• just adding standard momentum 
does not help much in improving 
performance further (see Hinton)

• however, further smoothing and 
correction operations can be applied...
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Alec Radford

Saddle example 
where RMSprop
outperforms 
previous 

methods...

Concept: element-wise 
dampening of recently highly 
active gradient components 

(A being large) and 
amplification of slowly 

changing gradient components 
(A being small)
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Some Observations in Convergence Visualisations

animation sources: 
Alec Radford

Example where 
Momentum (green) 
and NAG (purple), 
but particularly 
SGD (red) have 

trouble breaking 
the symmetry of the 

saddle point...

Simple 
example where 
slowness of 
SGD (red) 

convergence 
and Momentum 
overshoot is 

shown...

Whilst 
overshoot can 
be severe, 

often 
Momentum 

methods still 
carry an 
advantage 

over vanilla 
SGD...

Example where 
Nesterov
Momentum 
(purple) 
navigates 

saddle somewhat 
faster than 

plain Momentum 
(green)...
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Adam
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Adam(adaptive moment estimation) (Kingma & Ba 2014)

• Idea 1: smooth RMSprop‘s usually `noisy’ incoming gradient 
(beyond the effect of mini-batching) using a new parameter α:

• Idea 2: correct for the impact of bias introduced by ‘initialising’ 
the two smoothed measures – i.e. starting with t=1 ‘fade-in’
the smoothing effect exponentially by introducing     and    : 
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Summary Adam(adaptive moment estimation)
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parameter dimensions of W

fading of 
gradient 
 force
fast 

start-up

fading of 
per-weight 
magnitudes

smoothing of 
gradients

RMS propagation

element-wise 
squaring

element-wise dampening of recently highly active 
gradient components (A being large) and 
amplification of slowly changing gradient 

components (A being small)
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Right, can we train deep networks now? – Maybe...

• Why is applying Adam to ReLU-based networks not a guarantee for 
successful deep learning then?
– We have introduced new parameters α, β, ɛ... : 

how to set these so-called `hyper-parameters’?
– Even our mini-batch size has not been discussed...
– We have not talked about network initialisation – this matters 

a lot and can change results drastically if done wrong.
– Overfitting is likely to occur in deep networks as in any learning system: 

regularisation techniques are critical to achieve good generalisation 
beyond the training data available!

– Number of parameters explodes in deep networks; 
we may need to share them or reuse the entire net (e.g. CNNs/RNNs).

– The simple loss functions discussed so far need extending to 
provide better results for common tasks such as classification.

– The data we deal with is part of the training process – we have not talked 
about data at all so far...

 Yet, applying deep learning and achieving top-end results often involves a 
lot of parameter tuning, testing and trial-and-error of various designs and 
techniques available, and performance is critically dependent on the quality 
of training data and also the GPU-sizes which limit network designs –
it is still as much an `engineering process’ as it is a science...
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• Key Loss Functions
• L1 and L2 Weight Decay
• Dropout and Noise
• Data Augmentation
• Why deep is advantageous...
• Scalability Considerations...

Next: COST FUNCTIONS, REGULARISATION AND DEPTH


