
Department of Computer Science
University of Bristol

COMSM0045 – Applied Deep Learning 2020/21
comsm0045-applied-deep-learning.github.io

28 Slides

Lecture 04

OPTIMISATION
TECHNIQUES

Tilo Burghardt | tilo@cs.bris.ac.uk

Applied Deep Learning | University of Bristol 2

Agenda for Lecture 4

• Recap Backpropagation
• Optimisation Techniques

Applied Deep Learning | University of Bristol 3

Recap:
Backpropagation

Algorithm

Applied Deep Learning | University of Bristol 4

Recap: Backpropagation Algorithm

…

Cost

fj* fj
N

J

sj
N

gj
N

(wN)Tf N-1

fi
N-1 wij

N

gi
N-1

N
j

N
j

s

f





1


 N
iN

ij

N
j f

w

sN
ijN

i

N
j w

f

s





1

…

…

…

N
j

N
j

s

J






N
j

N
j

f

J




1

Applied Deep Learning | University of Bristol 5

SGD

Applied Deep Learning | University of Bristol 6

(Online) Backpropagation so far: Notational Compaction

Applied Deep Learning | University of Bristol 7

Noisy Gradient Descent due to Online Sampling

parameter dimensions of W

   
x

tt1t)Wx;(WW
givengradientsteepestratelearningoldnew

J 

single samples will only very
roughly approximate aspects

of the cost function gradient
in online mode, leading to a
very noisy gradient descent

which may not find the
accurate minimum at all

Can we actually
reach an exact
minimum?

Applied Deep Learning | University of Bristol 8

Online, Deterministic and Stochastic Training

ONLINE
GRADIENT
DESCENT

(MINIBATCH)
STOCHASTIC
GRADIENT
DESCENT

Can we actually
reach an exact
minimum?


j

jLJ)f*),W,x(f(
|X|

1
W DETERMINISTIC GRADIENT DESCENT

given small
enough

learning rate
DGD will make
progress to
true local

minimum, but
at high

computational
cost!

Applied Deep Learning | University of Bristol 9

Practical Solution: SGD with ‘Simulated Annealing’

introduction of a changing learning rate ηk

decreasing over τ+1 steps by blending from
a starting learning rate η0 towards a final

learning rate ητ.

...

Applied Deep Learning | University of Bristol 10

Slow Descent and Local ‘Dips’ of Cost Function

parameter dimensions of W

descent is generally very slow and may get
trapped in very localised, shallow ‘dips’ when
using DGD given very small learning rates – we

would like to ‘surf’ over these local
depressions on steep hills

Could we use
physics principles
to speed up
descent?

Applied Deep Learning | University of Bristol 11

Momentum

Applied Deep Learning | University of Bristol 12

• Idea: introduce a velocity term v of
‘current descent speed’ and use
current gradient to change this
velocity rather than weights directly

• step sizes now depend on how large
and how aligned a previous sequence
of gradients has been

• formally, we change the update
equations for weights from:

by introducing velocity accumulation:

Speeding up Learning via Momentum




momentum

t

t
parametermomentum

t

v

Jvv

1t1t

t1

WW

)WX;(







 

)WX;(WW tt1t J 

animation sources:
Alec Radford

Examples where
Momentum (green)
provides clear

convergence speed
advantage over plain

SGD (red); note
overshoots though.

Applied Deep Learning | University of Bristol 13

• Idea: don’t calculate gradient at
current position since momentum will
carry us forward to another position
anyway – take (lookahead) gradient at
target

• can be seen as adding a ‘correction
term’ to the standard method of
momentum

• consistenly works slightly better than
standard momentum in practice

• weights are now updated as follows:

• however, still very slow progress on
shallow plateau regions

Nesterov Accelerated Gradient (NAG)

1t1t

t1

WW

)WX;(









t

locationpreview

ttt

v

vJvv



)WX;(tJ

)WX;(t tvJ  

)WX;(tJ

tv

tv

1tv

1tv

MOMENTUM

NESTEROV
MOMENTUM

tW

tW

Applied Deep Learning | University of Bristol 14

Newton’s
Method

Applied Deep Learning | University of Bristol 15

Newton’s Method (2nd Order)

• Idea: let curvature rescale the gradient –
multiplying the gradient by the inverse
Hessian leads to an optimization that takes
aggressive steps in directions of shallow
curvature and shorter steps in directions
of steep curvature

• great advantage: no extra learning rate or
hyperparameters needed

• however, computing and inverting the
Hessian is very expensive and space
consuming (Hessian H has square size
w.r.t. to number of weights!):

• yet, Newton’s method without
modifications has a critical shortcoming:
it is attracted to Saddle points...
(see also “Hessian-free” 2nd-order methods)

)WX;())WX;((WW t
-1

tt1t JJ  H
























.........

......

.........

)(
2

ji ww

J
JH

RECAP: HESSIAN MATRIX

Applied Deep Learning | University of Bristol 16

Saddle Points as Critical Points

image adjusted from source: Ian Goodfellow 2015

• There are various point categories of the objective function where
the gradient is zero:
- Minima (all Eigenvalues of Hessian positive),
- Maxima (all Eigenvalues of Hessian negative),
- Saddle points (both positive and negative Eigenvalues of Hessian)

Applied Deep Learning | University of Bristol 17

Saddle Point
Considerations

Applied Deep Learning | University of Bristol 18

Are there more Saddle points or local Minima?

• for an arbitrary problem, assume sign of Hessian Eigenvalues
is random:
- exponentially less likely to get ‘all positive’ (i.e. being a
Minimum) with higher and higher parameter dimensions

• Random Matrix Theory provides further insight:
- the lower J is, the more likely to find positive Eigenvalues

• neural nets without non-linearities have global minima
connected via a single manifold and many Saddle points
(Saxe et al, 2013)

GOOD NEWS:
Most critical points with higher cost J should be Saddle points

and they offer a chance to escape from them particularly via
symmetry-breaking descent-methods!

Most local minima should therefore have a low cost J
associated with them and may be reachable via descent!

Applied Deep Learning | University of Bristol 19

High Number of Saddle points

• experiments and theoretical
arguments (Dauphin et al 2014,
Choromanska et al 2015) provide
some support that neural nets have
indeed as many Saddle points as
Random Matrix Theory proposes

• in fact, the number of Saddle points
may increase exponentially with the
dimensionality of the function

NOT SO GREAT NEWS:
Newton’s method will work poorly

(since being attracted to Saddle
points) with a high chance of getting
stuck

however, idea of a function-adaptive
learning rate seems valuable

image source:
wikipedia.com

MONKEY
SADDLE

image source:
Chen et al. 2012

SADDLE POINT
EXAMPLES

(white)

Applied Deep Learning | University of Bristol 20

Per-weight
Adaptive Gradients

Applied Deep Learning | University of Bristol 21

Adagrad(adaptive gradient) (Duchi et al. 2011)

• Idea: keep track of per-weight learning rates
to force evenly spread learning speeds –
weights that are associated with high
gradients have their effective rate of learning
decreased, whilst weights that have
infrequent or particularly small updates have
their rates increased.

• such `monotonic learning’ may help with
issues including breaking of symmetries and
slow progress in particular dimensions

• update now uses a Wt-sized accumulator A:

• however, this `monotonic learning’ is a very
aggressive approach and lacks the possibility
of late adjustments...learning usually stops
too early...

)A(

)WX;(
WW

))WX;((AA

1t

t
t1t

2
tt1t
















J

J

Example where
Adagrad breaks
symmetry...

element-
by-element
squaring

avoiding
division
by zero

animation sources:
Alec Radford

Concept: element-wise
dampening of historically
highly active gradient

components
(A being large) and

amplification of slowly
changing gradient components

(A being small)

Applied Deep Learning | University of Bristol 22

RMSprop (Hinton “L.6 S.29”)

• Idea: root-mean-square propagation –
combat the aggressive reduction in
Adagrad’s learning speed by
propagation of a smooth running
average

• update equations now introduce a
smoothing parameter β:

• just adding standard momentum
does not help much in improving
performance further (see Hinton)

• however, further smoothing and
correction operations can be applied...

)A(

)WX;(
WW

))WX;()(1(AA

1t

t
t1t

2
tt1t


















J

J

animation sources:
Alec Radford

Saddle example
where RMSprop
outperforms
previous

methods...

Concept: element-wise
dampening of recently highly
active gradient components

(A being large) and
amplification of slowly

changing gradient components
(A being small)

Applied Deep Learning | University of Bristol 23

Some Observations in Convergence Visualisations

animation sources:
Alec Radford

Example where
Momentum (green)
and NAG (purple),
but particularly
SGD (red) have

trouble breaking
the symmetry of the

saddle point...

Simple
example where
slowness of
SGD (red)

convergence
and Momentum
overshoot is

shown...

Whilst
overshoot can
be severe,

often
Momentum

methods still
carry an
advantage

over vanilla
SGD...

Example where
Nesterov
Momentum
(purple)
navigates

saddle somewhat
faster than

plain Momentum
(green)...

Applied Deep Learning | University of Bristol 24

Adam

Applied Deep Learning | University of Bristol 25

Adam(adaptive moment estimation) (Kingma & Ba 2014)

• Idea 1: smooth RMSprop‘s usually `noisy’ incoming gradient
(beyond the effect of mini-batching) using a new parameter α:

• Idea 2: correct for the impact of bias introduced by ‘initialising’
the two smoothed measures – i.e. starting with t=1 ‘fade-in’
the smoothing effect exponentially by introducing and :

)A(

G
WW

))WX;()(1(AA

))WX;()1(GG

1t

1t
t1t

2
tt1t

tt1t
























J

J

)A(

G
WW

)(1 / AA

))WX;()(1(AA

)(1 / GG

))WX;()1(GG

t1t

1t

2
tt1t

1t

tt1t

































t

t

J

J

G A

Applied Deep Learning | University of Bristol 26

Summary Adam(adaptive moment estimation)

)A(

G
WW

)(1 / AA

))WX;()(1(AA

)(1 / GG

))WX;()1(GG

t1t

1t

2
tt1t

1t

tt1t

































t

t

J

J

parameter dimensions of W

fading of
gradient
 force
fast

start-up

fading of
per-weight
magnitudes

smoothing of
gradients

RMS propagation

element-wise
squaring

element-wise dampening of recently highly active
gradient components (A being large) and
amplification of slowly changing gradient

components (A being small)

Applied Deep Learning | University of Bristol 27

Right, can we train deep networks now? – Maybe...

• Why is applying Adam to ReLU-based networks not a guarantee for
successful deep learning then?
– We have introduced new parameters α, β, ɛ... :

how to set these so-called `hyper-parameters’?
– Even our mini-batch size has not been discussed...
– We have not talked about network initialisation – this matters

a lot and can change results drastically if done wrong.
– Overfitting is likely to occur in deep networks as in any learning system:

regularisation techniques are critical to achieve good generalisation
beyond the training data available!

– Number of parameters explodes in deep networks;
we may need to share them or reuse the entire net (e.g. CNNs/RNNs).

– The simple loss functions discussed so far need extending to
provide better results for common tasks such as classification.

– The data we deal with is part of the training process – we have not talked
about data at all so far...

 Yet, applying deep learning and achieving top-end results often involves a
lot of parameter tuning, testing and trial-and-error of various designs and
techniques available, and performance is critically dependent on the quality
of training data and also the GPU-sizes which limit network designs –
it is still as much an `engineering process’ as it is a science...

Applied Deep Learning | University of Bristol 28

• Key Loss Functions
• L1 and L2 Weight Decay
• Dropout and Noise
• Data Augmentation
• Why deep is advantageous...
• Scalability Considerations...

Next: COST FUNCTIONS, REGULARISATION AND DEPTH

