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Agenda for Lecture 3 

• Recap Auto-Differentiation
• Backpropagation Algorithm
• Activation Functions
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Recap: Reverse 
Auto-Differentiation in 
Computational Graphs
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A General Strategy: Chain Rule and Summing over all Paths
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General Approach based on Network Layout: 

Analytical Solution:

sum over all paths that connect f to a

apply 
chain 
rule 
along
path
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Observation of Hierarchical Dependency
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Global Structure used so far: 

Hierarchical Structure: 
We observe that, to 

calculate results from 
the layer above, for 
each node we can sum 

over all incoming edges 
from the layer above 
and multiply each by 
the result we have 

obtained in the node 
that the edge connects 
to in the layer above.

 once you know all (part-evaluated) derivatives 
associated to a layer above, summation of them 
from connected nodes times local derivatives is 
sufficient to get the next layer of derivatives
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Summary of Reverse Auto-Differentiation
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• Two-pass Strategy
– forward pass to give values to

nodes and output
– backward pass to establish

deltas δ, i.e. all partial derivatives

• Requirements
– feed-forward network
– local per-edge derivatives 

must be known

• Solution Tactic
– instead of explicit summation 

over all paths, layer-by-layer 
evaluation via summation 
over all incoming local
derivatives times
their associated deltas
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…

Deep Neural Networks as Special Computational Graphs
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The 
Backpropagation

Algorithm
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Idea of Backpropagation for Network Training

• General Concept:
combine reverse auto-differentiation (for finding 
relationship of cost function to each weight) with 
gradient descent (for stepwise adjustment of weights)

• Intuition behind ‘Error Derivative Propagation’: 
compute discrepancy between network output and target; 
then propagate this discrepancy backwards through the 
network adjusted by the influence of the paths travelled in 
order to determine the influence of each and every weight 
(ends of paths) towards the discrepancy

…
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Overall Strategy behind Backpropagation

• First, calculate neuron activities for all 
layers and cost in a forward pass given 
the input.

• At the top of the network, convert the 
discrepancy between outputs and targets 
according to the cost function into error 
derivatives linked to the final layer 
output (the topmost deltas).

• Then, layer by layer, calculate error 
derivatives for neurons in hidden layers 
by combining all connected error 
derivatives in the layer above and 
considering the effect of activation 
functions – thereby, propagating error 
derivatives backwards.

• Use neuron activities to get error 
derivatives w.r.t. the weights.
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The Backpropagation Concept: Step 1

• First, calculate all sj
l and fj

l in a single 
forward pass.

• At the top of the network, convert 
the discrepancy between outputs f N
and targets f* into error derivatives 
δj

N+1 linked to all final layer neurons 
j according to J, and compute δj

N.

• Next, layer by layer, calculate all 
error derivatives δi

l-1 in each hidden 
layer from all error derivatives δj

l in 
the layer above.

• Use these error derivatives δj
l w.r.t. 

activities fi
l-1 to get error derivatives 

w.r.t. the weights.
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Backpropagation of Error Derivatives between Layers
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The Backpropagation Concept: Step 2
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• First, calculate all sj
l and fj

l in a single 
forward pass.

• At the top of the network, convert 
the discrepancy between outputs f N
and targets f* into error derivatives 
δj

N+1 linked to all final layer neurons 
j according to J, and compute δj

N.

• Next, layer by layer, calculate all 
error derivatives δi

l-1 in each hidden 
layer from all error derivatives δj

l in 
the layer above.

• Use these error derivatives δj
l w.r.t. 

activities fi
l-1 to get error derivatives 

w.r.t. the weights.
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The Backpropagation Concept: Step 3

• First, calculate all sj
l and fj

l in a single 
forward pass.

• At the top of the network, convert 
the discrepancy between outputs f N
and targets f* into error derivatives 
δj

N+1 linked to all final layer neurons 
j according to J, and compute δj

N.

• Next, layer by layer, calculate all 
error derivatives δi

l-1 in each hidden 
layer from all error derivatives δj

l in 
the layer above.

• Use these error derivatives δj
l w.r.t. 

activities fi
l-1 to get error derivatives 

w.r.t. the weights.
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Backpropagation Algorithm (Sketch)

initialise all weights randomly
for t=0, 1, 2, … do

pick next training sample 
FORWARD PASS: compute all layer outputs
compute derivative of cost function w.r.t. final layer
BACKWARD PASS: compute all deltas
update all weights based on deltas and activities
check if stopping criteria are met to break loop

return final weights
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Backpropagation Algorithm (Details)

initialise all weights       randomly

for t=0, 1, 2, … do

pick next training sample ([f1
0, f2

0,…], [f1
*, f2

*,…])

FORWARD PASS: compute all                             and

compute top deltas

BACKWARD PASS: compute all

update weights

check if stopping criteria are met to break loop 

return final weights
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Right, can we train deep networks now? – Not quite...

• Backpropagation has been known since 1970s
• What stood in the way of training deep nets effectively?

– There is a fundamental issue of gradient instability when 
training truly deep architectures: originally known as the 
vanishing gradient problem since 1990s.

– We need fast, differentiable and meaningful robust neuron 
layouts that address this issue (e.g. ReLU, LSTM).

– Descent-based optimisation techniques need to work 
accurately and fast in practice despite large training data sets 
(GPU parallelisation and improved optimisers help a lot here).

– Number of parameters explode in deep networks; we may 
need to share them or reuse the entire net (e.g. CNNs/RNNs).

– Regularisation techniques are critical to achieve good 
generalisation beyond the training data available!

• It took until the late 2000s to address these arising issues 
adequately and make deep learning work well in practice...
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Activation Functions
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Requirement for Differentiable, Non-Linear Activation Functions
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• First Idea: replace step function 
with tanh to provide a fully 
differentiable, similarly 
structured alternative

• However, what happens to the 
gradient at the tail ends of tanh?

tanh gradient 
is defined 

and non-zero 
everywhere

we require a 
differentiable 
non-linearity

appealingly 
simple 

derivative using 
squared output
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The ‘Vanishing Gradient’ Problem
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• Problem:  tanh becomes close to 0 when 
‘saturated’ – this causes early layers in particular to 
learn much slower if at all (since the gradient may 
vanish exponentially)

• first explained by Sepp Hochreiter in 1990s

• Some helpful measures may include: 
– hierarchical pre-training of shallow networks
– extensively slow+long training on all data helps
– propagate alternatives to gradient (e.g. sign of gradient)
– forward signal via residual neural networks (ResNet)
– other, specially robust neuron layouts
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gradient becomes very small 
when the input is saturating 
the neuron (either very high 
positive or negative input)

gradient is 
always smaller 
than 1 (or equal 
to 1 at origin)

Example: the further we propagate the error derivative 
backwards (e.g. l being small), the more often we multiply δ
with a very small number tanh’<1, potentially making learning 
extremely slow or suppress it completely in early layers.

tanh
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Rectifying Linear Unit (ReLU)

• Second Idea: ReLU combines high 
speed of evaluation with a non-
saturating non-linearity

• combined effect may yield 
practically 5-10 times faster 
convergence of a network

• however, it introduces a new 
problem a.k.a. ‘Dying Neurons’: 
a large gradient flowing through a 
ReLU unit may force the neuron to 
never activate again (with the 
incoming signal always averaging 
under zero)

• thus, a network may end up carrying 
a lot of dead units that will not 
contribute to learning anymore 
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The ‘Dying Neuron’ Problem
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• Problem:  under circumstances 
where very large gradients are 
being passed through a ReLU unit, 
incoming weights may be changed 
(for instance towards strong 
negative values) so that the unit 
will not receive a signal above zero 
(ever) again and remains without 
output or learning contribution for 
the rest of training. Qualitatively, 
the following sequence may occur:
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Guidance in the Zoo of Activation Functions

overview source: 
wikipedia.com

• avoid using sigmoids and expect tanh to work worse than ReLU
• as a current standard use ReLU as activation function: you may need to control the 

learning rate (set fairly low) and monitor the fraction of dead units
• leaky versions or generalisations of ReLU may help combat ‘Dying Neurons’
• many more activation functions have been proposed, here is some of them:

leaky ReLU

sigmoid

ReLU



Applied Deep Learning   |   University of Bristol 24

Next Time: Optimisation Techniques

• Stochastic Gradient Descent
• Momentum and Nesterov Acceleration
• Newton’s Method (2nd Order)
• Saddle Point Arguments
• Adaptive Gradient Descent


