
Department of Computer Science
University of Bristol

COMSM0045 – Applied Deep Learning 2020/21
comsm0045-applied-deep-learning.github.io

24 Slides

Lecture 03

BACKPROPAGATION
ALGORITHM

Tilo Burghardt | tilo@cs.bris.ac.uk

Applied Deep Learning | University of Bristol 2

Agenda for Lecture 3

• Recap Auto-Differentiation
• Backpropagation Algorithm
• Activation Functions

Applied Deep Learning | University of Bristol 3

Recap: Reverse
Auto-Differentiation in
Computational Graphs

Applied Deep Learning | University of Bristol 4

A General Strategy: Chain Rule and Summing over all Paths

a

b c

ed 2

*

+ +

2522

322

)3()2()2(

2

22







gfgfg

fgfgggfgfg

gfgfgfgfg

2

2







fg

ec
b

a

fgf

edb
c

a







3

1


d

b 1







e

c

e

b


321 pathpathpath

f

d

d

b

b

a

f

e

e

c

c

a

f

e

e

b

b

a

f

a


































2522

625)(

2263

2)()3(2)3(

22)2)((

2

22

222

2

2













gfgfg
f

a

ffgggf

fggffgffg

fgfgffgf

eeddeeeda

g

f

*

3

+

gfe

fd

ec

edb

cba

*

3

2

*








g
f

e





1



f

d

General Approach based on Network Layout:

Analytical Solution:

sum over all paths that connect f to a

apply
chain
rule
along
path

Applied Deep Learning | University of Bristol 5

Observation of Hierarchical Dependency

a

b c

ed 2

*

+ +

2

2







fg

ec
b

a

fgf

edb
c

a







3

1


d

b 1







e

c

e

b

...

321

d

b

b

a

d

a
e

c

c

a

e

b

b

a

e

a

f

d

d

a

f

e

e

a

f

a

f

d

d

b

b

a

f

e

e

c

c

a

f

e

e

b

b

a

f

a

pathpathpath
















































































g

f

*

3

+
g

f

e





1



f

d

Global Structure used so far:

Hierarchical Structure:
We observe that, to

calculate results from
the layer above, for
each node we can sum

over all incoming edges
from the layer above
and multiply each by
the result we have

obtained in the node
that the edge connects
to in the layer above.

 once you know all (part-evaluated) derivatives
associated to a layer above, summation of them
from connected nodes times local derivatives is
sufficient to get the next layer of derivatives

Applied Deep Learning | University of Bristol 6

Summary of Reverse Auto-Differentiation

g=2

2

*

+ +

10


b

a
15




c

a

1


d

b
1








e

c

e

b

f=4

*+
2



f

e
1




f

d

d=7 e=8

b=15 c=10

a=150

1

1510

10 25

3
60

f

a






• Two-pass Strategy
– forward pass to give values to

nodes and output
– backward pass to establish

deltas δ, i.e. all partial derivatives

• Requirements
– feed-forward network
– local per-edge derivatives

must be known

• Solution Tactic
– instead of explicit summation

over all paths, layer-by-layer
evaluation via summation
over all incoming local
derivatives times
their associated deltas

Applied Deep Learning | University of Bristol 7

…

Deep Neural Networks as Special Computational Graphs

Cost

fj* fj
N

J

sj
N

gj
N

(wN)Tf N-1

fi
N-1 wij

N

gi
N-1

N
j

N
j

s

f





1


 N
iN

ij

N
j f

w

sN
ijN

i

N
j w

f

s





1

…

To
p

En
d

of
 N

et
w

or
k

…
…

…

N
j

N
j

s

J






…

fj
l

sj
l

gj
l

(wl)Tf l-1

fi
l-1 wij

l

gi
l-1

l
j

l
j

s

f





1


 l
il

ij

l
j f

w

sl
ijl

i

l
j w

f

s





1

…

…

…

Si
ng

le
 jth

N
eu

ro
n

of
 lth

La
ye

r

… …

…

l
j

l
j

s

J






N
j

N
j

f

J




1

Applied Deep Learning | University of Bristol 8

The
Backpropagation

Algorithm

Applied Deep Learning | University of Bristol 9

Idea of Backpropagation for Network Training

• General Concept:
combine reverse auto-differentiation (for finding
relationship of cost function to each weight) with
gradient descent (for stepwise adjustment of weights)

• Intuition behind ‘Error Derivative Propagation’:
compute discrepancy between network output and target;
then propagate this discrepancy backwards through the
network adjusted by the influence of the paths travelled in
order to determine the influence of each and every weight
(ends of paths) towards the discrepancy

…

Applied Deep Learning | University of Bristol 10

Overall Strategy behind Backpropagation

• First, calculate neuron activities for all
layers and cost in a forward pass given
the input.

• At the top of the network, convert the
discrepancy between outputs and targets
according to the cost function into error
derivatives linked to the final layer
output (the topmost deltas).

• Then, layer by layer, calculate error
derivatives for neurons in hidden layers
by combining all connected error
derivatives in the layer above and
considering the effect of activation
functions – thereby, propagating error
derivatives backwards.

• Use neuron activities to get error
derivatives w.r.t. the weights.

Cost

f* f N

J

…

…

compute error
derivative
(deltas)
at output
neurons based
on cost function

si
l-1

fi
l-1

…

sj
l…s2

ls1
l

…
l

j

l
j

s

J






1

1







 l
i

l
i

s

J

…given
derivative
so far…

…gives
derivative
of next
layer…

l
ijw

…propagate
weighted
error derivative
backwards from
all connections…

…consider
effect of
activation
function…)(' 1l

isg

Applied Deep Learning | University of Bristol 11

The Backpropagation Concept: Step 1

• First, calculate all sj
l and fj

l in a single
forward pass.

• At the top of the network, convert
the discrepancy between outputs f N
and targets f* into error derivatives
δj

N+1 linked to all final layer neurons
j according to J, and compute δj

N.

• Next, layer by layer, calculate all
error derivatives δi

l-1 in each hidden
layer from all error derivatives δj

l in
the layer above.

• Use these error derivatives δj
l w.r.t.

activities fi
l-1 to get error derivatives

w.r.t. the weights.

Cost

fj* fj
N

J

To
p

En
d

of
 N

et
w

or
k

…

… N
j

N
j

f

J




1

…

*1

2*

2

1)(..

j
N

jN
j

N
j

j
j

N
j

ff
f

J

ffJge















1)('  N
j

N
j

N
j

N
j sg sj

N

gj
N

Applied Deep Learning | University of Bristol 12

Backpropagation of Error Derivatives between Layers


















































)(

1

11

11
)(

1

)('

1

1

1

)(

1

1
1

)('

)('

11

ld

j

l
j

l
ij

l
i

l
i

l
i

l
i

l
ij

ld

j

l
j

sg

l
i

l
i

w

l
i

l
j

ld

j
l
j

l
i

l
i

wsg

sgw

s

f

f

s

s

J

s

J

l
i

l
i

l
ij

l
j









si
l-1

gi
l-1

fi
l-1

l
ijl

i

l
j w

f

s





1

…

sj
l…s2

ls1
l …

… l
j

l
j

s

J






1

1







 l
i

l
i

s

J

Cost

J

La
ye

r l
La

ye
r l

-1
)(' 11

1

1








 l

i
l

il
i

l
i sg

s

f

Applied Deep Learning | University of Bristol 13

The Backpropagation Concept: Step 2

si
l-1

gi
l-1

fi
l-1

)(' 11

1

1








 l

i
l

il
i

l
i sg

s

f

l
ijl

i

l
j w

f

s





1

…

sj
l…s2

ls1
l …

… l
j

l
j

s

J






1

1







 l
i

l
i

s

J

• First, calculate all sj
l and fj

l in a single
forward pass.

• At the top of the network, convert
the discrepancy between outputs f N
and targets f* into error derivatives
δj

N+1 linked to all final layer neurons
j according to J, and compute δj

N.

• Next, layer by layer, calculate all
error derivatives δi

l-1 in each hidden
layer from all error derivatives δj

l in
the layer above.

• Use these error derivatives δj
l w.r.t.

activities fi
l-1 to get error derivatives

w.r.t. the weights.

Cost

J





 


)(

1

11
1

)('
ld

j

l
j

l
ij

l
i

l
il

i

wsg
s

J 

Applied Deep Learning | University of Bristol 14

The Backpropagation Concept: Step 3

• First, calculate all sj
l and fj

l in a single
forward pass.

• At the top of the network, convert
the discrepancy between outputs f N
and targets f* into error derivatives
δj

N+1 linked to all final layer neurons
j according to J, and compute δj

N.

• Next, layer by layer, calculate all
error derivatives δi

l-1 in each hidden
layer from all error derivatives δj

l in
the layer above.

• Use these error derivatives δj
l w.r.t.

activities fi
l-1 to get error derivatives

w.r.t. the weights.

…

sj
l

(wl)Tf l-1

fi
l-1 wij

l

1


 l
il

ij

l
j f

w

s

…

…

…

1









 l

i
l
jl

ij

l
j

l
j

l
ij

f
w

s

s

J

w

J 

l
j

l
j

s

J






Cost

J

Applied Deep Learning | University of Bristol 15

Backpropagation Algorithm (Sketch)

initialise all weights randomly
for t=0, 1, 2, … do

pick next training sample
FORWARD PASS: compute all layer outputs
compute derivative of cost function w.r.t. final layer
BACKWARD PASS: compute all deltas
update all weights based on deltas and activities
check if stopping criteria are met to break loop

return final weights

Applied Deep Learning | University of Bristol 16

Backpropagation Algorithm (Details)

initialise all weights randomly

for t=0, 1, 2, … do

pick next training sample ([f1
0, f2

0,…], [f1
*, f2

*,…])

FORWARD PASS: compute all and

compute top deltas

BACKWARD PASS: compute all

update weights

check if stopping criteria are met to break loop

return final weights

l
ijw




 
)(

1

111)('
ld

j

l
j

l
ij

l
i

l
i

l
i wsg 

)(
)1(

1

1 l
j

l
j

l
j

ld

i

l
i

l
ij

l
j sgffws  







N
j

N
j

N
j

N
j fJsg  /)('

l
j

l
i

l
ij

l
ij fww  1

l
ijw

Applied Deep Learning | University of Bristol 17

Right, can we train deep networks now? – Not quite...

• Backpropagation has been known since 1970s
• What stood in the way of training deep nets effectively?

– There is a fundamental issue of gradient instability when
training truly deep architectures: originally known as the
vanishing gradient problem since 1990s.

– We need fast, differentiable and meaningful robust neuron
layouts that address this issue (e.g. ReLU, LSTM).

– Descent-based optimisation techniques need to work
accurately and fast in practice despite large training data sets
(GPU parallelisation and improved optimisers help a lot here).

– Number of parameters explode in deep networks; we may
need to share them or reuse the entire net (e.g. CNNs/RNNs).

– Regularisation techniques are critical to achieve good
generalisation beyond the training data available!

• It took until the late 2000s to address these arising issues
adequately and make deep learning work well in practice...

Applied Deep Learning | University of Bristol 18

Activation Functions

Applied Deep Learning | University of Bristol 19

Requirement for Differentiable, Non-Linear Activation Functions

0

?

0
)('

0

1

1
)(


















s

otherwise

if
sg

s

otherwise

if
sg

step

step

2
tanhtanh

2tanh

1)('

1
1

2
)(

gsg

e
sg

s






 

• First Idea: replace step function
with tanh to provide a fully
differentiable, similarly
structured alternative

• However, what happens to the
gradient at the tail ends of tanh?

tanh gradient
is defined

and non-zero
everywhere

we require a
differentiable
non-linearity

appealingly
simple

derivative using
squared output

Applied Deep Learning | University of Bristol 20

The ‘Vanishing Gradient’ Problem

2
tanhtanh

2tanh

1)('

1
1

2
)(

gsg

e
sg

s






 

• Problem: tanh becomes close to 0 when
‘saturated’ – this causes early layers in particular to
learn much slower if at all (since the gradient may
vanish exponentially)

• first explained by Sepp Hochreiter in 1990s

• Some helpful measures may include:
– hierarchical pre-training of shallow networks
– extensively slow+long training on all data helps
– propagate alternatives to gradient (e.g. sign of gradient)
– forward signal via residual neural networks (ResNet)
– other, specially robust neuron layouts

 
  

factorastimeslNappearsg

ld

j

ld

k

l
jk

l
j

l
ij

l
i

l
j

ld

j

l
ij

l
i

l
i wgwgwg

)1('

)(

1

)1(

1

11
)(

1

11 ...'''













   







 

gradient becomes very small
when the input is saturating
the neuron (either very high
positive or negative input)

gradient is
always smaller
than 1 (or equal
to 1 at origin)

Example: the further we propagate the error derivative
backwards (e.g. l being small), the more often we multiply δ
with a very small number tanh’<1, potentially making learning
extremely slow or suppress it completely in early layers.

tanh

Applied Deep Learning | University of Bristol 21

Rectifying Linear Unit (ReLU)

• Second Idea: ReLU combines high
speed of evaluation with a non-
saturating non-linearity

• combined effect may yield
practically 5-10 times faster
convergence of a network

• however, it introduces a new
problem a.k.a. ‘Dying Neurons’:
a large gradient flowing through a
ReLU unit may force the neuron to
never activate again (with the
incoming signal always averaging
under zero)

• thus, a network may end up carrying
a lot of dead units that will not
contribute to learning anymore



 





otherwise

sif
sg

ssg

defLU

LU

0

01
)('

),0max()(

Re

Re

graph (from
Krizhevsky et al.)

shows 6x speed
advantage of ReLU
over tanh networks

ReLU

ReLU tanh

Applied Deep Learning | University of Bristol 22

The ‘Dying Neuron’ Problem

  

 

  





zero

l
i

l
i

l
i

neg

l
i

BIGneg

l
ki

BIGpos

l
i

l
k

BIGpos

l
i

ld

j
BIGpos

l
j

possay

l
ij

openassumed

l
i

l
i

sgf

swf

wsg

0)(

)('

111

1112

1
)(

1

11















 




si

l-1

gi
l-1

fi
l-1

l
ijl

i

l
j w

f

s





1

sj
l…s2

ls1
l l

j

l
j

s

J






1

1







 l
i

l
i

s

J

La
ye

r l
La

ye
r l

-1

)(' 11

1

1








 l

i
l

il
i

l
i sg

s

f

1

2

1








 l

kil
k

l
i w

f

s

• Problem: under circumstances
where very large gradients are
being passed through a ReLU unit,
incoming weights may be changed
(for instance towards strong
negative values) so that the unit
will not receive a signal above zero
(ever) again and remains without
output or learning contribution for
the rest of training. Qualitatively,
the following sequence may occur:

fk
l-2…

(wl-1)Tf l-2

Applied Deep Learning | University of Bristol 23

Guidance in the Zoo of Activation Functions

overview source:
wikipedia.com

• avoid using sigmoids and expect tanh to work worse than ReLU
• as a current standard use ReLU as activation function: you may need to control the

learning rate (set fairly low) and monitor the fraction of dead units
• leaky versions or generalisations of ReLU may help combat ‘Dying Neurons’
• many more activation functions have been proposed, here is some of them:

leaky ReLU

sigmoid

ReLU

Applied Deep Learning | University of Bristol 24

Next Time: Optimisation Techniques

• Stochastic Gradient Descent
• Momentum and Nesterov Acceleration
• Newton’s Method (2nd Order)
• Saddle Point Arguments
• Adaptive Gradient Descent

