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Agenda for Lecture 2

* Recap Gradient Descent
* Computational Graphs
* Reverse Auto-Differentiation
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The Global Training Problem

* Training Problem: We have a (highly) non-linear

function, the cost function J of a networlk,
and we want to find a parameterization W
across all weights w,/ that minimizes it...

o R
) fN
N s/ i
P g fk
summation non-linearity J (X, W)
jth neuron / /
[t layer
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. ldea of ‘Steepest’ Gradient Descent

1 VIXW)

learning rate Steepest gradient

parameter dimensions of W
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Partial Derivatives of Interest

N
N "
sz fjl
fH
summation non-linearity J (X W)
th % ’
J""neuron
[t layer /
We require: VJ(X;W)=VJ,(W) as given by all 6JX(}V) )

where w,/ is the i*" weight to the /™ neuron

of the /*" layer. Thus, we need to compute
partial derivatives of J w.r.t. all weights.

Applied Deep Learning | University of Bristol 6




Potential Options for Calculating Error Derivatives

* Symbolic Differentiation?
— not supporting arbitrary setups

— solution structure may not resemble network
structure at all

* Numerical Differentiation?
— trivial to implement
— low accuracy
— potentially high computational cost

- Automatic Differentiation of the
Network’s Computational Graph
(as used by Tensorflow)
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REVERSE
AUTO-DIFFERENTIATION IN

COMPUTATIONAL GRAPHS




Relationships in Feedforward Computational Graphs

a=b*c

b=d+e da

c=e+2 of

d=3+ f Analytical Solution:

e = f*g a=(d+e)e+2)=de+2d+e* +2e
=G+ /) +2B3+ ) +(f2)’ +2/g
=3fa+ flg+6+2f+ f’g*+2f2
=g+ @) +5/2+2f +6

a—a=2fgz+2fg+5g+2
of

3 fll g
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A General Strategy: Chain Rule and Summing over all Paths

a=b*c Analytical Solution:
b=d+e a=(d+e)e+2)=de+2d+e’+2e

=B+ /)2 +203+/)+(f&) +2/2 da
c=e+?2 _ 2 2 2 oa

=3fe+ flg+6+42f + fle +2fe e c=e42 5_a:b:d+e
d=3+f (P4 g)+5fg+2f+6 ob %\ o

= 2

e=f*g 2_;:2fg2+2fg+5g+2 st =3+/+/8

General Approach based on Network Layout:

—
Oa |Oa Ob Oe N oa Oc Oe N oa ob od
of |0b oe Of| |Oc Oe of | |0b od of
athl ) pa\tth 1T pc;tfh?)
/v p

=\(fe +DH(fe +2)gH B+ f + f2)g
= fg+2+ fg'+2g+3g+ fg+ fg’

=2fg2+2fg+5g+2
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Observation of Hierarchical Dependency

Global Structure used so far:

oa 8a ob Oe 8a oc 8@ oa ob od I- a I
of 817 oe 8f 80 oe 8f 8b od 8f da_ 1. i, 9a g
ob c
pathl path2 path3 :fg+2 :';‘—I—f—lrfg

Hierarchical Structure:

We observe that, to
861 ] 861 ae n 861 861 calculate r‘esults, from

— | [ the layer above, for
8f oe 8f od 8f each node we can sum

over all incoming edges

aa aa ab aa 60 from the layer above
and multiply each by

oe ab ae oc oe the result we have
obtained in the node

aa aa ab that the edge connects

to in the layer above.

od ob od

- once you know all (part-evaluated) derivatives
associated to a layer above, summation of them
from connected nodes times local derivatives is
sufficient to get the next layer of derivatives
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Example Calculation: Complete Forward Pass
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Example Calculation: Backward Pass Layer 1

initialise
top with /
adA=150

a.k.a. the
delta o of
neuron b

o
]
\STEN
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Example Calculation: Backward Pass Layer 2
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Example Calculation: Backward Pass Layer 3
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Summary of Reverse Auto-Differentiation

* Two-pass Strategy

— forward pass to give values to
nodes and output

— backward pass to establish o .
deltas §, i.e. all partial derivatives 510/ %\ .70
* Requirements

— feed-forward network

— local per-edge derivatives
must be known

e Solution Tactic

— instead of explicit summation
over all paths, layer-by-layer
evaluation via summation
over all incoming local
derivatives times
their associated deltas

Applied Deep Learning | University of Bristol 16



Deep Neural Networks as Special Computational Graphs
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Next Time: Training

* The Backpropagation
Algorithm in Full Detail

e Activation Functions

??4‘\
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