Department of Computer Science University of Bristol

COMSM0045 – Applied Deep Learning

2020/21

comsm0045-applied-deep-learning.github.io

BASICS OF ARTIFICIAL NEURAL NETWORKS

Tilo Burghardt | tilo@cs.bris.ac.uk

35 Slides

Agenda for Lecture 1

- Neurons and their Structure
- Single & Multi Layer Perceptron
- Basics of Cost Functions
- Gradient Descent and Delta Rule
- Notation and Structure of Deep Feed-Forward Networks

BIOLOGICAL INSPIRATION

Golgi's first Drawings of Neurons

CAMILLO GOLGI

Schematic Model of a Neuron

Pavlov and Assistant Conditioning a Dog

Neuro-Plasticity

- plasticity refers to a system's ability to adapt structure and/or behaviour to accommodate new information
- the brain shows various forms of plasticity:

 natural forms include synaptic plasticity (mainly chemical),
 structural sprouting (growth), rerouting (functional changes),
 and neurogenesis (new neurons)

ARTIFICIAL FEED-FORWARD NETWORKS

Rosenblatt's (left) development of the Perceptron (1950s)

Simplification of a Neuron to a Computational Unit

Notational Details for the Perceptron

Geometrical Interpretation of the State Space

The basic Perceptron defines a hyper plane $0 = w^T x$ in x-state space that linearly separates x_2 two regions of that space (which corresponds to a two-class normal linear classification) W_0/W_2 vector W_2 W_{I} positive sign area negative sign area $\mathbf{w}^T \mathbf{x} > \mathbf{0}$ $\mathbf{w}^T \mathbf{x} < \mathbf{0}$ \rightarrow^{x_1} w_0/w_1 hyper plane $w^T x = 0$ hyper plane defined by parameters w acts as decision boundary Applied Deep Learning University of Bristol Lecture 1

12

Basic Perceptron (Supervised) Learning Rule

Idea: whenever the system produces a misclassification with current weights, adjust weights by ∆w towards a better performing weight vector:

$$\Delta \mathbf{W}_{update} = \begin{cases} \eta f^*(\mathbf{x}) \mathbf{x} & if \quad \widehat{f^*}(\mathbf{x}) \neq \quad \widehat{f(\mathbf{x})} \\ 0 & otherwise \end{cases}$$

... where η is the learning rate.

Training a Single-Layer Perceptron

Perceptron Learning Example: OR

Perceptron Training Attempt of **OR** using $\Delta w = \eta (f^*(x) - f(x)) x; \quad \eta = 0.5$

x_1	x_2	f^*
0	0	-1
0	1	1
1	0	1
1	1	1

OR

encoding could be changed to traditional value 0 by adjusting the output of the sign function to 0; training algorithm still valid

	$x_{ heta}$	x_1	x_2	parameters w	f	f^*	<i>update</i> Δw
	-1	0	0	(0,0,0)	1	-1	(1,0,0)
	-1	1	0	(1,0,0)	-1	1	(-1,1,0)
	-1	0	0	(0,1,0)	1	-1	(1,0,0)
	-1	0	1	(1,1,0)	-1	1	(-1,0,1)
	-1	0	0	(0,1,1)	1	-1	(1,0,0)
	-1	0	1	(1,1,1)	1	1	(0,0,0)
	-1	1	0	(1,1,1)	1	1	(0,0,0)
	-1	1	1	(1,1,1)	1	1	(0,0,0)
7	-1	0	0	(1,1,1)	-1	-1	(0,0,0)

Geometrical Interpretation of OR Space Learned

Larger Example Visualisation

image source: datasciencelab.wordpress.com

COST FUNCTIONS

Cost (or Loss) Functions

Idea: Given a set X of input vectors x of one or more variables and a parameterisation w, a Cost Function is a map J onto a real number representing a cost or loss associated with the input configurations. (Negatively related to 'goodness of fit'.)

Expected Loss:
$$J(X;w) = E_{(x,f^*(x))\sim p}L(f(x;w),f^*(x))$$

Empirical Risk: $J(X;w) = \frac{1}{|X|} \sum_{x \in X} L(f(x;w),f^*(x))$
MSE Example: $MSE_{loss} = J(X;w) = \frac{1}{|X|} \sum_{x \in X} \underbrace{(f(x;w) - f^*(x))}_{uv \in V}$

loss function

per-example loss function

Energy Landscapes over Parameter Space

Applied Deep Learning | University of Bristol

STEEPEST GRADIENT DESCENT

Idea of 'Steepest' Gradient Descent

The Delta Rule

Applied Deep Learning | University of Bristol

LINEAR SEPARABILITY

Basic Learning Example: XOR

Perceptron Training Attempt of XOR using

$\Delta \mathbf{w} = \eta \left(f^*(\mathbf{x}) - f(\mathbf{x}) \right) \mathbf{x};$	$\eta = 0.5$	XOR
---	--------------	-----

	_	•	x_{θ}	x_1	x_2	parameters	f	f^*	update	x_1	x_2	f^*	
	earn	·	-1	0	0	(0,0,0)	1	-1	(1,0,0)	0	0	-1	
	ing		-1	1	0	(1,0,0)	-1	1	(-1,1,0)	0	1	1	
	prog	·	-1	0	0	(0,1,0)	1	-1	(1,0,0)	1	-	1	
	gress		-1	0	1	(1,1,0)	-1	1	(-1,0,1)	T	0	Т	
	sar		-1	0	0	(0,1,1)	1	-1	(1,0,0)	1	1	-1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1	0	1	(1,1,1)	1	1	(0,0,0)					
	0	(1,1,1)	1	1	(0,0,0)	Will t learni							
	1	(1,1,1)	1	-1	(1,-1,-1)								
		-1	1	0	(1,0,0)	-1	1	(-1,1,0)	eve				
	*		-1	0	1	(1,1,0)	-1	1	(-1,0,1)	1	orod	uce a	1
		•••								tion?	on?		

Geometrical Interpretation of XOR Space

Encoding Arbitrary Decision Boundaries

• Idea: use of a Multi-Layer Perceptron (MLP) with non-linear activation functions

MULTI-LAYER ARCHITECTURES

Structure and Notation for Deep Architectures

Outlook: LEARNING REPRESENTATIONS

Representational Power of Feedforward Networks

- The basic Perceptron represents a linear classifier.
- Boolean functions can be represented by layered networks with one hidden layer (networks may be very wide requiring an exponential number of hidden neurons compared to input).
- Layered networks with one hidden layer can also represent any continuous function [Cybenko 1989; Hornik et al. 1989].
- Layered networks with two hidden layers can represent any mathematical function [Cybenko 1988].

→ long-standing optimism about the potential of neural networks to model learning and intelligent systems
 → question arises: why use more than two hidden layers – why is `deep' advantageous at all? (see Lecture 4)

Deep Composition

source: Ian Goodfellow, www.deeplearningbook.org

The Concept of Deep Representation Learning

"It is only after much hesitation that the writer has reconciled himself to the addition of the term "neurodynamics" to the list of such recent linguistic artifacts as "cybernetics", "bionics", "autonomics", "biomimesis", "synnoetics", "intelectronics", and "robotics". It is hoped that by selecting a term which more clearly delimits our realm of interest and indicates its relationship to traditional academic disciplines, the underlying motivation of the perceptron program may be more successfully communicated."

--- Frank Rosenblatt

from "Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms", Spartan Books, 1962

Next Time: Towards Training Deep Architectures

- Computational Graphs
- Reverse Auto-Differentiation

