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Agenda for Lecture 1 

• Neurons and their Structure
• Single & Multi Layer Perceptron
• Basics of Cost Functions
• Gradient Descent and Delta Rule
• Notation and Structure of

Deep Feed-Forward Networks
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Biological Inspiration
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Golgi’s first Drawings of Neurons                     

image source: www.the-scientist.com

CAMILLO GOLGI

Computation in biological neural 
networks is delivered based on the 

co-operation of individual 
computational components, namely 

neuron cells. 
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Schematic Model of a Neuron
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synapsemain flow of information: feed-forward



Applied Deep Learning   |   University of Bristol Lecture 1    |    6

Pavlov and Assistant Conditioning a Dog

image source: www.psysci.co

An environment can condition the 
behaviour of biological neural networks 

leading to the incorporation of new 
information. 
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Neuro-Plasticity

• plasticity refers to a system’s ability to adapt structure 
and/or behaviour to accommodate new information

• the brain shows various forms of plasticity: 
- natural forms include synaptic plasticity (mainly chemical), 
structural sprouting (growth), rerouting (functional changes),
and neurogenesis (new neurons)

image source: 
www.cognifit.comExample of structural sprouting.

temporal system evolution
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Artificial 
Feed-forward Networks
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Rosenblatt’s (left) development of the Perceptron (1950s)

image source: csis.pace.edu
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Simplification of a Neuron to a Computational Unit
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Notational Details for the Perceptron
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Geometrical Interpretation of the State Space
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The basic Perceptron defines a hyper plane               . 
in x-state space that linearly separates

two regions of that space (which
corresponds to a two-class

linear classification)

xw0 T

hyper plane 
acts as 
decision 
boundary
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Basic Perceptron (Supervised) Learning Rule

• Idea: whenever the system produces a 
misclassification with current weights, 
adjust weights by         towards a better 
performing weight vector:

... where      is the learning rate.
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Compute Output

Compare Output and Ground Truth

Adjust Weights

Consider Next (Training) Input Pair

Training a Single-Layer Perceptron
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Perceptron Learning Example: OR

Perceptron Training Attempt of OR using

x1 x2 f*

0 0 -1

0 1 1

1 0 1

1 1 1

x0 x1 x2 parameters w f f* update ∆w

-1 0 0 (0,0,0) 1 -1 (1,0,0)

-1 1 0 (1,0,0) -1 1 (-1,1,0)

-1 0 0 (0,1,0) 1 -1 (1,0,0)

-1 0 1 (1,1,0) -1 1 (-1,0,1)

-1 0 0 (0,1,1) 1 -1 (1,0,0)

-1 0 1 (1,1,1) 1 1 (0,0,0)

-1 1 0 (1,1,1) 1 1 (0,0,0)

-1 1 1 (1,1,1) 1 1 (0,0,0)

-1 0 0 (1,1,1) -1 -1 (0,0,0)

... ... ... ... ... ... ...

5.0;x))x()x((w *   ff OR

learning progress sam
pling som

e (x,f*)

encoding could be
changed to traditional

value 0 by adjusting
the output of the sign
function to 0; training

algorithm still valid
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Geometrical Interpretation of OR Space Learned
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Larger Example Visualisation

image source: datasciencelab.wordpress.com
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Cost Functions
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Idea: Given a set X of input vectors x of one or more 
variables and a parameterisation w, a Cost Function 
is a map J onto a real number representing a cost or 
loss associated with the input configurations. 
(Negatively related to ‘goodness of fit’.)

Expected Loss:

Empirical Risk:

MSE Example:

Cost (or Loss) Functions
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Energy Landscapes over Parameter Space
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Steepest
Gradient Descent
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Idea of ‘Steepest’ Gradient Descent

parameter dimensions of w

   
gradientsteepestratelearningoldnew

J )wX;(ww tt1t  
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The Delta Rule

 

 

 
 













xw

)x(xwxw

)x(xw

)x(xw
|X|

)wX;(

)wX;(w

)x(xw
|X|2

1
)wX;(

*T

*T

Xx

*T

Xx

2*T

























  
derivativeerrortheis

kk

k
k

k

f

fxw

fx
w

J
w

J

fJ

...and for a single sample...

MSE-type cost function 
with identity function as 

activation function

weight vector change is 
modelled as a move along 

the steepest descent
change for a 

single weight wk

this term looks similar to the 
Perceptron learning rule

also known as The Delta Rule (Widrow & Hoff, 1960)
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Linear Separability
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Basic Learning Example: XOR

Perceptron Training Attempt of XOR using

Will the 
learning 
process

ever 
produce a
solution?

x1 x2 f*

0 0 -1

0 1 1

1 0 1

1 1 -1

x0 x1 x2 parameters f f* update

-1 0 0 (0,0,0) 1 -1 (1,0,0)

-1 1 0 (1,0,0) -1 1 (-1,1,0)

-1 0 0 (0,1,0) 1 -1 (1,0,0)

-1 0 1 (1,1,0) -1 1 (-1,0,1)

-1 0 0 (0,1,1) 1 -1 (1,0,0)

-1 0 1 (1,1,1) 1 1 (0,0,0)

-1 1 0 (1,1,1) 1 1 (0,0,0)

-1 1 1 (1,1,1) 1 -1 (1,-1,-1)

-1 1 0 (1,0,0) -1 1 (-1,1,0)

-1 0 1 (1,1,0) -1 1 (-1,0,1)

... ... ... ... ... ... ...

XOR

learning progress sam
pling som

e (x,f*)

5.0;x))x()x((w *   ff
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Geometrical Interpretation of XOR Space

NO hyper plane 
separates the two classes.
 Single-Layer Perceptrons (SLPs)
can only learn linearly separable 

problems.x1
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positive sign area

negative  sign area

0xw T

0xw T

-1

1

1

-1



Applied Deep Learning   |   University of Bristol Lecture 1    |    27

Encoding Arbitrary Decision Boundaries

• Idea: use of a Multi-Layer Perceptron (MLP) 
with non-linear activation functions 

Example of a hyper surface that
separates the two classes.
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Multi-Layer 
Architectures
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Structure and Notation for Deep Architectures
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Outlook: 

Learning 
Representations
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Representational Power of Feedforward Networks

• The basic Perceptron represents a linear classifier.

• Boolean functions can be represented by layered networks
with one hidden layer (networks may be very wide requiring an 
exponential number of hidden neurons compared to input).

• Layered networks with one hidden layer can also represent any 
continuous function [Cybenko 1989; Hornik et al. 1989].

• Layered networks with two hidden layers can represent any 
mathematical function [Cybenko 1988].

 long-standing optimism about the potential of neural 
networks to model learning and intelligent systems
 question arises: why use more than two hidden layers –
why is `deep’ advantageous at all? (see Lecture 4)



Applied Deep Learning   |   University of Bristol Lecture 1    |    32

Deep Composition

source: Ian Goodfellow, www.deeplearningbook.org
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The Concept of Deep Representation Learning

source: Ian Goodfellow, www.deeplearningbook.org
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“It is only after much hesitation that the 
writer has reconciled himself to the 
addition of the term "neurodynamics" 
to the list of such recent linguistic 
artifacts as "cybernetics", "bionics", 
"autonomics", "biomimesis", 
"synnoetics", "intelectronics", and 
"robotics". It is hoped that by selecting 
a term which more clearly delimits our 
realm of interest and indicates its 
relationship to traditional academic 
disciplines, the underlying motivation 
of the perceptron program may be more 
successfully communicated.”

--- Frank Rosenblatt

from “Principles of Neurodynamics: 
Perceptrons and the Theory of Brain 
Mechanisms”, Spartan Books, 1962

source: www.lmtech.info
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Next Time: Towards Training Deep Architectures

• Computational Graphs
• Reverse Auto-Differentiation


