
COMSM0045: Recurrent Neural Networks

Dima Damen
Dima.Damen@bristol.ac.uk

Bristol University, Department of Computer Science
Bristol BS8 1UB, UK

November 19, 2020

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Introduction

I By the end of this course you will be familiar with 3 types of DNNs
I Fully-Connected DNN
I Convolutional DNN
I Recurrent DNN

I The topic of today’s lecture will be Recurrent Neural Networks (RNNs)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Introduction

I Similar to CNNs, RNNs are specialised in processing certain types of
data

I CNNs were designed to deal with grid-like data
I RNNs are designed for processing sequential data

x1, x2, · · · , xt

I Importantly, RNNs can scale to much longer sequences than would be
practical for networks without sequence-based specialisation

I Most RNN architectures are designed to process sequences of
variable lengths

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

CNN vs RNN

I What is the difference between 1-D CNN and RNN?
I 1-D CNN allows sharing parameters across time but is shallow
I In 1-D CNN, the output is a function of a small number of

neighbouring members of the input
I In contrary, RNNs share parameters with all previous members of the

output
I This results in RNNs sharing parameters through a very deep

computational graph

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Recurrent Neural Networks

I For a certain time (t), the output function is the same as for other
DNNs

s(t) = f (x(t);w(t))

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Recurrent Neural Networks

I And similarly for input at other times t − 1

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Recurrent Neural Networks

I Weights can though be shared across time

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Recurrent Neural Networks

I RNNs emphasise the relationship between outputs over time
I w is called ‘input-to-hidden’ weights
I θ is called ‘hidden-to-hidden’ weights

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Recurrent Neural Networks

I Both w and θ are parameters for the RNN, we can thus use θ to refer
to both

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Recurrent Neural Networks

I To further emphasise that s is typically a hidden state of the system,
we follow the book’s notation using h

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Recurrent Neural Networks

I Accordingly
h(t) = f (h(t−1), x(t); θ)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Unfolding RNNs

I The equation below is typically unrolled for a finite number of steps

h(t) = f (h(t−1), x(t); θ)

I For 3 time steps

h3 = f (h2, x3; θ)

= f (f (h1, x2; θ), x3; θ)

I Note that the function f and the parameters θ are believed to be
shared for all temporal steps

I Regardless of the sequence length, the learnt model f and parameters
θ always have the same size - as it focuses on the transition over
consecutive inputs/outputs as opposed to a variable-length past

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Unfolding RNNs

I The different RNN architectures learn to use h(t) as a lossy summary
of the past input up to t.

h(t) = f (h(t−1), x(t); θ)

I The learning is by default lossy, as it aims to map from an arbitrary
length sequence (x(t), x(t−1), · · · , x1), to a fixed length output h(t)

I Depending on the training criteria, the learning selectively ‘keeps’
some part of the past and ‘forgets’ others

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I Note that h is the hidden representation of the RNN, not its output,
I So for every timestep,

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I Note that h is the hidden representation of the RNN, not its output,
I So for every timestep, an output o(t) would be predicted
I V is ‘hidden-to-output’ weights

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I The hidden state represents the summary of the past,
I The output can then be compared to a given label y(t)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I The output can then be compared to a given label y(t)

I Using a specified loss function L that measures how far each output o
is from the corresponding target label y

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I Note that we remove the parameter/weight W,V for simplicity

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I Next, we consider the connectivity across time steps
I Different variants of RNNs are available as follows,

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

RNN Types
1. The first type produces an output for every time step, with recurrent

connections between hidden units

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

RNN Types

I Do we need these hidden units??

I An observation in the distant pass might influence the decision via its
effect on h

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I In this case, three weights matrices can be envisaged

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I input to hidden connections are parameterised by weight U

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I hidden-to-hidden recurrent connections parameterised by weight W

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I hidden-to output connections are parameterised by weight V

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training an RNN
I and these are shared across timesteps
I This relies on the assumption that the same parameter can be used

for different time steps, i.e. the temporal dependency is stationary,
i.e. does not depend on t

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

RNN Types
2. The second type produces an output for every time step, with

recurrent connections from output to hidden units at the next time step

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

RNN Types
3. The third type reads multiple timesteps before producing a single

output

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

RNN Types
I The left model can be used to learn any function computable with a

Turing machine
I The middle model is less powerful. The information captured by the

output o is the only information it can send to the future. Unless o is
very high-dimensional and rich, it will lack important information from
the past.

I The right model can be used to produce summaries (e.g.
classifications of full sentences)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training RNNs
I We will next focus on the first model to understand how the forward

pass can be obtained

h(t) = g(Wh(t−1) + Ux(t) + b)

o(t) = g(Vh(t) + c)

I The total loss would them be the sum of all losses over all time steps

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training RNNs

I However, computing the gradient of this function is expensive
I It requires performing a forward propagation pass of the unrolled

network, followed by backward propagation pass throughout time
I The runtime is O(τ) and cannot be reduced by parallelisation because

the forward pass is sequential
I All computations in the forward pass must be stored until reused

during the backward pass, making the memory cost O(τ) as well
I This back-propagation algorithm is called back-propagation through

time (BPTT)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training RNNs

I Practically, computing the gradient through an RNN is straightforward.
I The generalised back-propagation algorithm is applied to the unrolled

network.
I For the network below, the parameters are: U,V,W, b, c,
I The nodes indexed by t: x(t), o(t),L(t) as well as the hidden node h(t)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training RNNs

I After the forward pass, gradient is first computed at the nodes
immediately preceding the final loss

∂L
∂L(t) = 1

I We can then calculate the loss using softmax and cross-entropy, given
the output o(t)

∂L
∂o(t) =

∂L
∂L(t)

∂L(t)

∂o(t) = ŷ(t)
i − 1i,y(t)

I We then work our way backwards, from the end of the sequence to
the start

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training RNNs

I Because the parameters are shared across many time steps,
calculating the derivative might seem confusing

I Calculating the derivative ∇WL operator, should take into account the
contribution of W from all edges in the graph.

I To resolve this, we introduce copies of W at different time steps W(t)

I We then calculate the gradient at time step t to be ∇W(t)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Training RNNs

I For the five parameters c, b,V,W,U, the gradients are given by

∇cL =
∑

t

∇o(t)L

∇bL =
∑

t

(∂h(t)

∂b(t)

)T∇h(t)L

∇VL =
∑

t

∑
i

(∂L
∂o(t)

)T∇V(t)o(t)
i =

∑
t

(∇o(t)L)h(t)T

∇WL =
∑

t

∑
i

(∂L
∂h(t)

)T∇W(t)h(t)
i =

∑
t

diag
(
1− (h(t))2)(∇h(t)L)h(t−1)T

∇UL =
∑

t

∑
i

(∂L
∂h(t)

)T∇U(t)h(t)
i =

∑
t

diag
(
1− (h(t))2)(∇h(t)L)x(t)T

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Other RNN Types

I Bi-directional RNNs
I Encoder-Decoder Sequence-to-Sequence architecture
I Gated RNNs
I Long-Short Term Memory (LSTMs)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Bi-directional RNNs

I We might want the prediction y(t) to depend on the whole sequence,
its past and future

I This is particularly of relevance to speech recognition, machine
translation or audio analysis

I As the name suggests, bidirectional RNNs combine an RNN that
moves forward through time, beginning from the start of the sequence,
with another that moves backward through time, beginning from the
end of the sequence.

I This allows the output unit o(t) to compute a representation that
depends on both the past and the future, without specifying any
fixed-size window around t

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Bi-directional RNNs

I A typical bidirectional RNN

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Encoder-Decoder RNN

I Mapping a variable-length sequence to another variable-length
sequence

I You can refer to c as the context
I The encoder reads the input, emitting the context - a function of its

hidden states
I The decoder writes the fixed-level output sequence

Goodfellow p384

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Long-Term Dependencies

I All previously mentioned architectures are good at learning short-term
dependencies, without specifying a fixed-length

I However, gradients propagated over longer time tend to either vanish
or explode

I Even when attempting to resolve the problem, by selecting parameter
spaces where the gradients do not vanish or explode, the problem
persists

I The gradient of a long-term interaction will always have exponentially
smaller magnitude than the gradient of a short-term interaction

I The most effective solution for long-term dependencies are gated
RNNs

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Gated RNNs

I Gated RNNs are based on creating paths through time
I This is achieved through connection weights that change at each time

step
I This allows the network to accumulate information over a long

duration - often referred to as memory
I It also allows the network to forget old states when needed
I Previous approaches attempted to set these accumulation and

forgetting gates manually, while gated RNNs attempt to learn to
decide when to do that.

I One of the most popular gated RNNs are LSTMs

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

LSTM

I First proposed by Hochreiter and Schmidhuber in 1997

Google Scholars 2017

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

LSTM

I The Adding Problem

Hochreiter and Schmidhuber (1997). Long-Short Term Memory. Neural Computation

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Two-slice LSTM Figure
I LSTM looks significantly more complex than an RNN until you start

dissecting it

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Two-slice LSTM Figure
I Let’s first simplify by keeping a single timestamp and only its

dependencies h(t−1), c(t−1)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

LSTM

I The ability to forget the
past is controlled by what
is rightly named, the
forget gate f (t)

I The weight of the forget
gate is set to a value
between 0 and 1 using a
sigmoid function

f (t)
i = σ

(
bf

i +
∑

j

Uf
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
f (t) = bf + Uf x(t) + W f h(t−1)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

LSTM

I The external input gate
unit i is computed in the
same way as the forget
gate

I Again, its weight is set to
a value between 0 and 1
using a sigmoid function

i(t) = bi + Uix(t) + W ih(t−1)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

LSTM

I The state gate unit c is
then updated as follows

I Where ◦ is an
element-wise
multiplication

c(t) = f i ◦ c(t−1) + i(t) ◦ σ
(

bj + Ujx(t) + W jh(t−1)
)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

LSTM

I The output gate unit o
also uses a sigmoid
function

o(t) = σ
(

bo + Uox(t) + Woh(t−1)
)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

LSTM

I And finally

h(t) = tanh(c(t)) ◦ o(t)

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Gated RNNs

I While LSTMs proved useful for both artificial and real data, questions
were asked on whether this level of complexity is necessary

I Recently, gated RNNs (GRUs) are increasingly used where a single
gating unit controls the forget factor and the update factor as follows,

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Gated RNNs
I An update gate

u(t) = σ
(

bu + Uux(t) + Wuh(t)
)

I A reset gate
r(t) = σ

(
br + Urx(t) + Wrh(t)

)
I A single update equation

h(t)
i = u(t−1)

i h(t−1)
i +(1− u(t−1)

i)σ
(

bi +
∑

j

Ui,jx
(t−1)
j +

∑
j

Wi,jr
(t−1)
j h(t−1)

j

)

I The reset gates chose to ignore parts of the state vector
I The update gates linearly gate any dimension, copying or completely

ignoring it
I The reset gates control which parts of the state get used, introducing

an additional nonlinear effect in the relationship with the past state.

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

Further Reading

I Deep Learning

Ian Goodfellow, Yoshua Bengio, and Aaron Courville
MIT Press, ISBN: 9780262035613.
I Chapter 10 – Sequence Modeling: Recurrent and Recursive Nets

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021

