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Introduction

I By the end of this course you will be familiar with 3 types of DNNs
I Fully-Connected DNN
I Convolutional DNN
I Recurrent DNN

I The topic of today’s lecture will be Recurrent Neural Networks (RNNs)
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Introduction

I Similar to CNNs, RNNs are specialised in processing certain types of
data

I CNNs were designed to deal with grid-like data
I RNNs are designed for processing sequential data

x1, x2, · · · , xt

I Importantly, RNNs can scale to much longer sequences than would be
practical for networks without sequence-based specialisation

I Most RNN architectures are designed to process sequences of
variable lengths

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021



CNN vs RNN

I What is the difference between 1-D CNN and RNN?
I 1-D CNN allows sharing parameters across time but is shallow
I In 1-D CNN, the output is a function of a small number of

neighbouring members of the input
I In contrary, RNNs share parameters with all previous members of the

output
I This results in RNNs sharing parameters through a very deep

computational graph
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Recurrent Neural Networks

I For a certain time (t), the output function is the same as for other
DNNs

s(t) = f (x(t);w(t))
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Recurrent Neural Networks

I And similarly for input at other times t − 1
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Recurrent Neural Networks

I Weights can though be shared across time

Dima Damen
Dima.Damen@bristol.ac.uk

COMSM0045: Recurrent Neural Networks - 2020/2021



Recurrent Neural Networks

I RNNs emphasise the relationship between outputs over time
I w is called ‘input-to-hidden’ weights
I θ is called ‘hidden-to-hidden’ weights
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Recurrent Neural Networks

I Both w and θ are parameters for the RNN, we can thus use θ to refer
to both
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Recurrent Neural Networks

I To further emphasise that s is typically a hidden state of the system,
we follow the book’s notation using h
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Recurrent Neural Networks

I Accordingly
h(t) = f (h(t−1), x(t); θ)
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Unfolding RNNs

I The equation below is typically unrolled for a finite number of steps

h(t) = f (h(t−1), x(t); θ)

I For 3 time steps

h3 = f (h2, x3; θ)

= f (f (h1, x2; θ), x3; θ)

I Note that the function f and the parameters θ are believed to be
shared for all temporal steps

I Regardless of the sequence length, the learnt model f and parameters
θ always have the same size - as it focuses on the transition over
consecutive inputs/outputs as opposed to a variable-length past
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Unfolding RNNs

I The different RNN architectures learn to use h(t) as a lossy summary
of the past input up to t.

h(t) = f (h(t−1), x(t); θ)

I The learning is by default lossy, as it aims to map from an arbitrary
length sequence (x(t), x(t−1), · · · , x1), to a fixed length output h(t)

I Depending on the training criteria, the learning selectively ‘keeps’
some part of the past and ‘forgets’ others
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Training an RNN
I Note that h is the hidden representation of the RNN, not its output,
I So for every timestep,
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Training an RNN
I Note that h is the hidden representation of the RNN, not its output,
I So for every timestep, an output o(t) would be predicted
I V is ‘hidden-to-output’ weights
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Training an RNN
I The hidden state represents the summary of the past,
I The output can then be compared to a given label y(t)
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Training an RNN
I The output can then be compared to a given label y(t)

I Using a specified loss function L that measures how far each output o
is from the corresponding target label y
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Training an RNN
I Note that we remove the parameter/weight W,V for simplicity
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Training an RNN
I Next, we consider the connectivity across time steps
I Different variants of RNNs are available as follows,
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RNN Types
1. The first type produces an output for every time step, with recurrent

connections between hidden units
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RNN Types

I Do we need these hidden units??

I An observation in the distant pass might influence the decision via its
effect on h
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Training an RNN
I In this case, three weights matrices can be envisaged
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Training an RNN
I input to hidden connections are parameterised by weight U
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Training an RNN
I hidden-to-hidden recurrent connections parameterised by weight W
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Training an RNN
I hidden-to output connections are parameterised by weight V
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Training an RNN
I and these are shared across timesteps
I This relies on the assumption that the same parameter can be used

for different time steps, i.e. the temporal dependency is stationary,
i.e. does not depend on t
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RNN Types
2. The second type produces an output for every time step, with

recurrent connections from output to hidden units at the next time step
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RNN Types
3. The third type reads multiple timesteps before producing a single

output
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RNN Types
I The left model can be used to learn any function computable with a

Turing machine
I The middle model is less powerful. The information captured by the

output o is the only information it can send to the future. Unless o is
very high-dimensional and rich, it will lack important information from
the past.

I The right model can be used to produce summaries (e.g.
classifications of full sentences)
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Training RNNs
I We will next focus on the first model to understand how the forward

pass can be obtained

h(t) = g(Wh(t−1) + Ux(t) + b)

o(t) = g(Vh(t) + c)

I The total loss would them be the sum of all losses over all time steps
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Training RNNs

I However, computing the gradient of this function is expensive
I It requires performing a forward propagation pass of the unrolled

network, followed by backward propagation pass throughout time
I The runtime is O(τ) and cannot be reduced by parallelisation because

the forward pass is sequential
I All computations in the forward pass must be stored until reused

during the backward pass, making the memory cost O(τ) as well
I This back-propagation algorithm is called back-propagation through

time (BPTT)
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Training RNNs

I Practically, computing the gradient through an RNN is straightforward.
I The generalised back-propagation algorithm is applied to the unrolled

network.
I For the network below, the parameters are: U,V,W, b, c,
I The nodes indexed by t: x(t), o(t),L(t) as well as the hidden node h(t)
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Training RNNs

I After the forward pass, gradient is first computed at the nodes
immediately preceding the final loss

∂L
∂L(t) = 1

I We can then calculate the loss using softmax and cross-entropy, given
the output o(t)

∂L
∂o(t) =

∂L
∂L(t)

∂L(t)

∂o(t) = ŷ(t)
i − 1i,y(t)

I We then work our way backwards, from the end of the sequence to
the start
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Training RNNs

I Because the parameters are shared across many time steps,
calculating the derivative might seem confusing

I Calculating the derivative ∇WL operator, should take into account the
contribution of W from all edges in the graph.

I To resolve this, we introduce copies of W at different time steps W(t)

I We then calculate the gradient at time step t to be ∇W(t)
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Training RNNs

I For the five parameters c, b,V,W,U, the gradients are given by

∇cL =
∑

t

∇o(t)L

∇bL =
∑

t

(∂h(t)

∂b(t)

)T∇h(t)L

∇VL =
∑

t

∑
i

( ∂L
∂o(t)

)T∇V(t)o(t)
i =

∑
t

(∇o(t)L)h(t)T

∇WL =
∑

t

∑
i

( ∂L
∂h(t)

)T∇W(t)h(t)
i =

∑
t

diag
(
1− (h(t))2)(∇h(t)L)h(t−1)T

∇UL =
∑

t

∑
i

( ∂L
∂h(t)

)T∇U(t)h(t)
i =

∑
t

diag
(
1− (h(t))2)(∇h(t)L)x(t)T
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Other RNN Types

I Bi-directional RNNs
I Encoder-Decoder Sequence-to-Sequence architecture
I Gated RNNs
I Long-Short Term Memory (LSTMs)
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Bi-directional RNNs

I We might want the prediction y(t) to depend on the whole sequence,
its past and future

I This is particularly of relevance to speech recognition, machine
translation or audio analysis

I As the name suggests, bidirectional RNNs combine an RNN that
moves forward through time, beginning from the start of the sequence,
with another that moves backward through time, beginning from the
end of the sequence.

I This allows the output unit o(t) to compute a representation that
depends on both the past and the future, without specifying any
fixed-size window around t
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Bi-directional RNNs

I A typical bidirectional RNN
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Encoder-Decoder RNN

I Mapping a variable-length sequence to another variable-length
sequence

I You can refer to c as the context
I The encoder reads the input, emitting the context - a function of its

hidden states
I The decoder writes the fixed-level output sequence

Goodfellow p384
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Long-Term Dependencies

I All previously mentioned architectures are good at learning short-term
dependencies, without specifying a fixed-length

I However, gradients propagated over longer time tend to either vanish
or explode

I Even when attempting to resolve the problem, by selecting parameter
spaces where the gradients do not vanish or explode, the problem
persists

I The gradient of a long-term interaction will always have exponentially
smaller magnitude than the gradient of a short-term interaction

I The most effective solution for long-term dependencies are gated
RNNs
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Gated RNNs

I Gated RNNs are based on creating paths through time
I This is achieved through connection weights that change at each time

step
I This allows the network to accumulate information over a long

duration - often referred to as memory
I It also allows the network to forget old states when needed
I Previous approaches attempted to set these accumulation and

forgetting gates manually, while gated RNNs attempt to learn to
decide when to do that.

I One of the most popular gated RNNs are LSTMs
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LSTM

I First proposed by Hochreiter and Schmidhuber in 1997

Google Scholars 2017
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LSTM

I The Adding Problem

Hochreiter and Schmidhuber (1997). Long-Short Term Memory. Neural Computation
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Two-slice LSTM Figure
I LSTM looks significantly more complex than an RNN until you start

dissecting it
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Two-slice LSTM Figure
I Let’s first simplify by keeping a single timestamp and only its

dependencies h(t−1), c(t−1)
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LSTM

I The ability to forget the
past is controlled by what
is rightly named, the
forget gate f (t)

I The weight of the forget
gate is set to a value
between 0 and 1 using a
sigmoid function

f (t)
i = σ

(
bf

i +
∑

j

Uf
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
f (t) = bf + Uf x(t) + W f h(t−1)
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LSTM

I The external input gate
unit i is computed in the
same way as the forget
gate

I Again, its weight is set to
a value between 0 and 1
using a sigmoid function

i(t) = bi + Uix(t) + W ih(t−1)
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LSTM

I The state gate unit c is
then updated as follows

I Where ◦ is an
element-wise
multiplication

c(t) = f i ◦ c(t−1) + i(t) ◦ σ
(

bj + Ujx(t) + W jh(t−1)
)
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LSTM

I The output gate unit o
also uses a sigmoid
function

o(t) = σ
(

bo + Uox(t) + Woh(t−1)
)
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LSTM

I And finally

h(t) = tanh(c(t)) ◦ o(t)
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Gated RNNs

I While LSTMs proved useful for both artificial and real data, questions
were asked on whether this level of complexity is necessary

I Recently, gated RNNs (GRUs) are increasingly used where a single
gating unit controls the forget factor and the update factor as follows,
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Gated RNNs
I An update gate

u(t) = σ
(

bu + Uux(t) + Wuh(t)
)

I A reset gate
r(t) = σ

(
br + Urx(t) + Wrh(t)

)
I A single update equation

h(t)
i = u(t−1)

i h(t−1)
i +(1− u(t−1)

i )σ
(

bi +
∑

j

Ui,jx
(t−1)
j +

∑
j

Wi,jr
(t−1)
j h(t−1)

j

)

I The reset gates chose to ignore parts of the state vector
I The update gates linearly gate any dimension, copying or completely

ignoring it
I The reset gates control which parts of the state get used, introducing

an additional nonlinear effect in the relationship with the past state.
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Further Reading

I Deep Learning

Ian Goodfellow, Yoshua Bengio, and Aaron Courville
MIT Press, ISBN: 9780262035613.
I Chapter 10 – Sequence Modeling: Recurrent and Recursive Nets
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